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Abstract—Current operating system designs require applica-
tions (apps) to implicitly place trust in a large amount of code.
Taking Android as an example, apps must trust both the kernel
as well as privileged userspace services that consist of hundreds
of thousands of lines of code. Malware apps, on the other hand,
aim to exploit any vulnerabilities in the above large trusted base
to escalate their privileges. Once malware escalates its privileges,
additional attacks become feasible, such as stealing credentials
by scanning memory pages or intercepting user interactions of
sensitive apps, e.g., those used for banking or health management.
This paper introduces a novel mechanism, called Anception, that
strategically deprivileges a significant portion of the kernel and
system services, moving them to an untrusted container, thereby
significantly reducing the attack surface for privilege escalation
available to malware. Anception supports unmodified apps, run-
ning on a modified Android kernel. It achieves performance
close to native Android on several popular macrobenchmarks
and provides security against many types of known Android root
exploits.

Keywords—Android, Virtualization, Root Exploits, Trust De-
composition

I. INTRODUCTION

Smartphones are characterized by an ecosystem of online
app markets that enable developers (hobbyists, professionals,
criminals) to reach large audiences. According to a recent
Kaspersky report [30], 98.05% of known malware targets
Android, a popular smartphone platform, to gain a foothold
on the device. Once a foothold is acquired, malware escalates
its privileges and then targets mobile banking and personal
data [3], [2].

Android provides basic isolation among apps. For example,
Android assigns a different Linux-UID (user ID) to each
installed app. However, in practice, malware can still exploit
vulnerabilities in system services or the operating system to
escalate its privileges and break isolation [22], [31], [34],
[37]. For example, Gingerbreak was an exploit on Android
that exploited a vulnerability in the root-capability vold vol-
ume daemon on Android to escalate its privileges. Another
attack vector for unprivileged malware is to exploit a kernel
vulnerability. For example, on Linux, vulnerabilities continue
to be found – CVE-2013-2094 local privilege escalation that
exploits Performance Counters for Linux, CVE-2014-7145 in
the Linux CIFS file system code, CVE-2014-6416 buffer flow
vulnerability in the Linux network code [14].

Once an unprivileged malware exploits a privileged service
or the kernel, it opens the door to further rootkit-style attacks,
including tampering with the code of installed apps or system
libraries, examining and tampering with virtual memory of
other apps, monitoring their communications, etc. For example,
in the Man-in-the-Binder attack, once malware gains root
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privilege on the OS it intercepts IPC communication between
an app and the UI stack to steal all touch input data, that
includes text input on the virtual keyboard such as userids and
passwords [7].

In this paper, we aim to protect sensitive data in an app’s
virtual memory such as banking credentials, health data and
corporate data. These apps authenticate the user via UI inter-
action and these interactions must be protected. While these
apps may send data over the network over an authenticated and
encrypted channel, the same data will reside in unencrypted
form in virtual memory. Thus, virtual memory of these apps
must also be protected. Currently, none of this data is protected
if an unprivileged app exploits a kernel or privileged service
bug and escalates its privileges.

The most secure solution today to address the problem for
the user to use two physical devices, one for trustworthy apps
and another for untrustworthy apps. Besides being inconve-
nient in terms of managing two devices, the user has to judge
the trustworthiness of apps correctly. If the user is tricked even
once into installing a malicious app on the same device as the
one that contains trustworthy apps, security guarantees break
down.

A similar solution to the two-device solution is to use
a single device that is partitioned to provide multiple vir-
tual devices. Cells [5] and systems based on Cells, e.g.,
Airbag [45], are examples of this. This reduces the inconve-
nience of carrying two physical devices, but retains the other
disadvantages of a two-device solution. If a user is tricked into
installing a malicious app on the virtual device that contains
trusted apps, the confidentiality of data in trusted apps can
be violated by privilege escalation attacks. Another system
proposal is Overshadow [13] and similar mechanisms [47],
[25] that introduce a memory cloaking primitive wherein an
app’s virtual memory is encrypted in a trusted layer (such as
a hypervisor or hardware support [9]) upon a context switch
to the untrusted OS (or another process). Unfortunately, the
Android’s UI stack resides within the untrusted OS and thus
will remains vulnerable to malware – the design does not
consider securing UI interactions – the primary method for
sensitive data to flow between a user and the app.

This paper presents a novel solution for protecting apps
from each other. Our design, called Anception, uses virtual-
ization as a building block but does not require the user to
make an a priori judgment on trustworthiness of apps. Instead,
it deprivileges significant portions of the kernel and system
services so that the attack path that is normally possible for a
malware app for privilege escalation is blocked.

To achieve its security goals, Anception adapts the classical
virtualization model and executes many system services as
well as most system calls on a low-privilege container kernel.
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However, unlike the classical virtualization model, the con-
tainer kernel does not have access to either the user-interface
interactions of apps or to their virtual memory. This provides
a foundation for building high assurance apps that can better
protect themselves without requiring a shaky assumption that
the user will never install malicious apps on the same system.

We prototyped Anception on Android 2.3 and 4.2 in the
form of two loadable Linux kernel modules, consisting of
approximately 5.2K lines of code. Anception does not require
any modifications to the Android Framework or to Android
applications. We make the following contributions:

• The notion of trust decomposition for Android apps
running on a monolithic OS, wherein, the trust an app
places in the OS is split between a smaller trusted host
component and a larger untrusted component. The key
security guarantee enabled is confidentiality of virtual
memory and of UI interactions with a smaller trusted
base.

• The design and implementation of Anception, a sys-
tem architecture that deprivileges Android system ser-
vices and kernel services and delegates their function-
ality to an unprivileged virtualized container (Sections
III, IV). Anception is able to deprivilege 1.2M lines
of code from the linux kernel and 108K lines of code
from the privileged Android userspace (Section V)

• Detailed evaluation of the security decisions made
during design (Section V). We analyzed 25 Android
vulnerabilities related to privileged system services
and kernel services from the past 4 years and de-
termined that the reduced attack surface provided by
Anception would have blocked 23 of them sufficiently
to prevent significant attacks on both the host OS
as well as other apps on the system; the remaining
two attacks would have succeeded, but could have
been detected and prevented with simple policy-based
checks at the system-call interface on both standard
Android and Anception-based Android.

• Performance evaluation of Anception-based Android
(Section VI). While Anception-based Android suf-
fered in performance on some microbenchmarks that
involved system calls crossing boundaries between the
trusted host and the untrusted container, the perfor-
mance hit was relatively modest on I/O-based bench-
marks and negligible on graphical and interactive
macrobenchmarks.

II. THREAT MODEL AND SECURITY GUARANTEES

Threat model. The attacker is a low assurance app down-
loaded from official and unofficial app stores and exploits
vulnerabilities in the kernel services and privileged userspace
services with the aim of corrupting and stealing information
from high assurance apps. We assume that both high and low
assurance apps are installed on the same operating system.
Additionally, high assurance apps are well-designed – they
use encryption for network communications and do not leave
secrets in plain text anywhere except in virtual memory.

We do not prevent theft of secrets in an app’s memory via
covert channels, e.g., by observing memory and CPU usage
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Fig. 1. Exploitation channels available. In (a), the low assurance app triggers a
vulnerability in a privileged service (1) and uses the extra privileges to tamper
with the high assurance HiApp (2). Similarly, LoApp uses an exploit in the
network stack (arrows 3 and 4). On Anception (b), the compromised privileged
service cannot directly access the state of HiApp (arrows 2 and 4 are blocked)
because the services are delegated to the container.

patterns. We also do not prevent disruptions. A malicious app
may be able to disrupt the running of other apps even without
escalating privileges. Such attacks are likely to be noticed
quickly by users and thus we consider them to be less effective.

The host operating system kernel must be trusted but
normally presents a significant attack surface. Our system
reduces the attack surface it presents to apps by running any
privileged operations of an app in a virtualized environment.

Security Guarantees. We provide confidentiality of an
app’s virtual memory in the presence of malicious apps that
exploit kernel and privileged userspace services for privilege
escalation. Additionally, we ensure that malware cannot eaves-
drop on and tamper with the UI interactions of an app.

III. ANCEPTION DESIGN

A. Overview

Consider two apps, HiApp and LoApp. HiApp is a high
assurance app such as a banking or health management app
and LoApp is a low assurance one such as a game or a
calculator. Figure 1(a) shows the execution environment of
an app on Android. The kernel provides the usual services
of memory, storage, and networking, among others. The priv-
ileged services provide higher level functions such as data
management, sensor management, location management, etc.
Privileged services consist of large bodies of complex systems
code and thus provide a large attack surface (on Android,
the privileged services consist of approximately 180K lines
of code). The same attack surface is exposed to both apps.
Worryingly, LoApp can exploit any bugs in the large attack
surface presented by the privileged services as well as the
OS and then use their privileges to exploit and steal secrets
contained in the memory of HiApp. Examples of possible ex-
ploits using previously vulnerabilities on Android include the
following: (1) LoApp exploits a negative index vulnerability
in the privileged vold service (Figure 1) and uses it to exploit
HiApp1; and (2) LoApp triggers an exploit in the networking
stack and uses kernel privileges to steal secrets from HiApp2.

1This vulnerability existed on Android, and is known as GingerBreak.
2This too existed in the Linux kernel and is known as CVE-2009-2692.
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The core of the matter is that high and low assurance apps
share the same trusted, but likely buggy, base. It is perhaps
reasonable to assume that high assurance apps and services do
not exploit the bugs; however, no such assumption can be made
of low assurance apps. Thus, we seek to split the trusted base
such that low assurance apps cannot violate the confidentiality
of high assurance apps by exploiting privileged services, even
if these services are buggy. Our confidentiality guarantees are
primarily confined to virtual memory of high assurance apps.
As far as the confidentiality of file system data and network
communication of high assurance apps is concerned, it can be
relatively easily provided by using encryption (we do protect
the keys that are used to bootstrap the encryption). Also, we
focus on confidentiality rather than integrity. As we will see,
the options available for violating integrity of a high assurance
app will be severely limited and are likely to be detected. We
assume that high assurance apps use end-to-end authentication
and encryption when communicating over the network.

Our defense partitions the trusted base into a host kernel
and a container kernel. The privileged services are carefully
partitioned to run on these two kernels. An important question
is deciding the partition in which each service executes.
Figure 1(b) shows our decision. The trusted host contains the
virtual memory of the app, its read-only code and the UI/Input
service. The untrusted container has the storage, networking
and other services, such as vold and location service. The goal
is to run non-UI and non-memory services in the container
to the extent feasible to reduce the available attack surface.
The container itself is deprivileged with respect to the host
kernel; however, services within the container maintain enough
privilege to perform their assigned tasks. We measured the
lines of code in privileged services on Android. We found
that approximately 109K lines out of 181K are not connected
with UI/Input management, suggesting that up to 59.9% of the
trusted base in the form of privileged services can be reduced.

The reason for keeping the UI/Input service as part of the
trusted host kernel is that fundamentally all sensitive interactive
input from the end-user is obtained through the UI/Input
service (e.g., passwords, touch inputs). If this service had
been delegated to the untrusted container, a compromise within
the container would have allowed stealing of user-provided
sensitive information.

The virtual memory of an app also must necessarily contain
sensitive state (e.g., passwords). Hence, we maintain virtual
memory of all apps on the host. In our example, LoApp may
compromise a privileged service, but this service resides in
the container that is unprivileged with respect to the host
kernel. Thus, the attacker cannot access HiApp’s memory via
the deprivileged service, thereby reducing the available attack
surface.

Storage deserves special consideration. A typical storage
stack is quite large (ext4 on Linux is approximately 26K lines
of C, and all filesystem-related Linux code is approximately
725K lines of C). Therefore, it is desirable to delegate storage
calls to a container. However, the storage stack is also used by
trusted host services (e.g., package installer) and the HiApp’s
code must be protected from tampering by LoApp. To protect
an app’s code but still redirect all app-generated file system
calls to the container, Anception keeps the read-only code
of an app on the host and keeps all other data files of the

app in the container. This design implies that the app’s data
could be stolen if a low assurance app compromises the
container. Fortunately, this problem is easy to address by high
assurance apps encrypting their writes to the container or by
extending our file system implementation in the container to
use known transparent encryption techniques [18] to secure the
reads/writes when they cross the boundary from host kernel
to the untrusted container kernel. Similarly, we assume the
high assurance app encrypts network packets before utilizing
container network services. We describe a detailed example
of how to use Anception’s architecture to construct a secure
banking app later in this section.

Anception bridges IPC channels to function across the
kernels. For example, our implementation supports shared
memory and Android’s custom Binder IPC. We also designed
a system call bridge that transfers system calls destined for
the container. We provide details later in this section and in
Section IV.

Anception’s design thus simplifies the ability of apps to
protect themselves from malicious apps by reducing the attack
surface that is available by both deprivileging services as
well as by transferring the network and filesystem calls to an
untrusted container kernel.

B. Architecture

We utilize a deprivileged container to execute delegated
privileged services. We refer to this as a container virtual
machine (CVM). Anception’s design is based on the following
principles:

1) Launch the app from the trusted host kernel: The
app’s code is stored outside the CVM.

2) Protect the UI/Input from the container’s kernel: Do
not trust the container with UI related operations but
handle them centrally on the host.

3) Protect the app’s virtual memory from the container’s
kernel: Do not trust the container with virtual mem-
ory of applications. Instead, pages are managed by
the trusted host outside the control of the container.

4) Protect the host: Protect the host system as much
as possible under the constraint of the first three
principles. To the extent feasible, privileged opera-
tions (system calls) invoked on the host kernel should
instead run in the context of the CVM.

The above principles have to be achieved on an operating
system designed for mobile devices where resources are lim-
ited. Since attacks on the kernel are part of the threat model,
a possible solution is to give every app a guest kernel, but
we assume that is not yet practical for both resource and
performance reasons, and unlikely to be practical even with
hardware advances as the power demands of an increased code
base will outweigh any benefits.

We briefly describe why each of the above principles is
necessary under our threat model in order to protect high
assurance apps from untrusted apps. We assume that a low
assurance app has compromised the CVM via the larger
available attack surface (e.g., one of the privileged services)
and has escalated its privileges. Consider a well-designed
mobile banking app. Upon launching, the banking app acquires
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a user ID and password via the touch-screen interface on the
device.

Since the attacks we consider enable privilege escalation,
the attacker can modify the app’s code such that the banking
app itself communicates the password to an attacker. On
Anception, principle 1 ensures that the app code is stored on
the host. As stated, all non-code state of apps are maintained
in the CVM. Thus any attacker-issued writes are serviced in
the CVM that does not contain app code.

Next, the compromised OS can intercept the user ID and
password as it is entered by the user. Principle 2 ensures that
the CVM will not have an opportunity to intercept that input
since the UI stack does not run in the CVM.

Next, the app will store the user ID and password in
its virtual memory. This provides another opportunity for the
attacker to steal the information. For example, if there were to
be a scheduler context-switch due to a timer, the kernel gets
control and could read the app’s memory. Principle 3 ensures
that the CVM will not be able to read the user-level memory
pages of the app.

Principle 4 is necessary since the host kernel must be
trusted (that is true in all virtualization solutions). Thus, we
minimize the attack surface of the host kernel, i.e., execute the
system calls on the CVM’s kernel when it is consistent with
other principles.

We now show that above principles are sufficient to build
a simple secure banking app that can protect its sensitive data
from malware. Figure 2 depicts a banking app running on
Anception’s infrastructure. The app is launched from the host
and its memory pages exist only on the host. A certificate to
authenticate the bank’s server is read from its code base and
loaded into its virtual memory at launch time. It receives a user
ID and password securely from the host-side display manager
and stores them in its isolated memory pages. Using these two
items, the bank app can communicate with the bank server
over an end-to-end secure protocol such as TLS/SSL (session
keys for this will get negotiated end-to-end and reside in the
memory of the app). Communications go through the CVM,
potentially running malicious apps, but the CVM is unable to
read them. A bank server may also provide secure storage of
persistent data through this secured network connection.

Note that writing to local storage is not necessary to build a
fully-functional secure app that works with our threat model.
In practice, however, most apps do take advantage of local
storage. If that were to be the case, a compromised container
can steal information from such storage. However, an app may
store cryptographic keys in its code that is protected from other
apps and from the CVM. Then, the app can encrypt any data
written to storage in the CVM. We discuss a enhancement
to the Anception design in Section VII to allow secure local
storage transparently for apps.

Launching apps securely. When an app is downloaded
from an online store, it is installed on the host. Thus the app’s
code resides on the host. Figure 3 shows the banking app’s
code outside the CVM. The code is maintained in a permission
protected directory such that only the app and the system may
access the code. Android already supports this requirement.
This achieves the first principle. Note that Anception provides

Fig. 2. Design of a secure banking app. The app maintains cryptographic
keys in its read-only code in trusted storage on the host VM. This code is only
accessible by the app and the system. Other apps cannot access the trusted
storage.

Fig. 3. High Level Architecture. A proxy process executes in the CVM
whose purpose is to execute forwarded system calls. The proxy has the same
security credentials of the host process within the CVM (same UID, set of
permissions).

protection to only non-root user apps. Therefore, all launched
apps have a non-zero UID. 3

Isolating and securing the UI/Input. On Android, if
an app wishes to display output or receive input, it needs
to create the appropriate UI elements in memory and then
request the services of the display and input managers through
an IPC. The IPC interface is well defined on smartphone
operating systems, just as in standard Linux based systems
(OpenGL, X). On Android, display-related operations occur
through IPCs (specifically, a type of ioctl system call) on
the WindowManager. Anception detects and identifies these
operations at the system call interface and lets them pass
through to the host OS (Figure 3). Any information collected
through UI elements resides on the host only, hence obeying
the second principle.

3If an app changes its UID after being launched, Anception will kill the
app. Such changes are not permitted as per the Android security model and
are made possible only on rooted devices, that are outside our threat model.
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Servicing UI/Input on the host enables an important op-
timization. The CVM runs a headless Android stack, thus
cutting its memory consumption. We have evaluated memory
consumption (Section VI-C) and found that Anception runs an
Android stack consuming around 64MB 4.

Protecting User Pages of an App from the CVM. When
the user launches the app, code is loaded into memory pages
on the host. These pages are not visible to the CVM because
the host exercises strict control over the pages available to
the CVM, thus obeying the third principle. As we observe in
Figure 3, sensitive data exists in pages outside the addressable
region of the CVM.

Reducing the Attack Surface of the host kernel. Anception
creates a lightweight proxy for the app that executes within
the CVM and has the same security credentials (UID, umask,
directory structure) as that of its host counterpart within the
CVM. When the app issues a system call, Anception’s host-
side redirection logic inspects the call and generally redirects
them to the CVM. The proxy’s purpose is to execute any
forwarded system calls from the host kernel. The other ad-
vantage of using a proxy is that the permissions model of the
host is transported to the CVM. The same permission checks
that would have been executed on the host for a process are
executed on the CVM. In Figure 3, Anception operates in host
kernel space and serves to transfer such calls to the CVM
kernel by performing the appropriate marshaling (including
pointer translation if call arguments contain pointers) of data.

C. Splitting the execution of Android apps

Anception services a subset of system calls on the CVM,
which is lower privileged, while the process memory resides
on the host. The other subset of calls is serviced on the host
kernel. Consider the following cases:

• An app that makes no system calls: In this case, the
app executes entirely on the host. Since it makes no
system calls, the app is not going to be able to attack
the system to escalate its privileges. Such apps are not
likely to be very interesting, but they work correctly
under Anception.

• An app that makes only UI/Input system calls: Ancep-
tion recognizes UI/Input related calls and lets them
execute on the host. This is possible because the
UI operations are well-defined and easily identified.
There is no overlap of UI-managed (e.g., framebuffer,
touch screen) resources with other resources visible
to an app (e.g. files); that is, UI related calls do not
manipulate non-UI resources on Android.

• An app that makes system calls that depend on an
abstract handle: As before, Anception recognizes the
UI calls and service them on the host. Other calls that
provide functionality through an abstract handle, such
as the file descriptor, can be serviced in the CVM
as long as the invariants provided by the handle in
the form of its exposed functionality are maintained.
Examples include the vast majority of file system, IPC,
and networking related calls.

4For comparison, even an old version of Android (GingerBread) required
atleast 256MB to run.

1 / / o b t a i n an FD f o r b i n d e r communica t ion
2 b i n d e r = open ( ‘ / dev / b i n d e r ’ , ‘ rw ’ ) ;
3 / / g e t bank s e r v e r c e r t t h a t came w i t h t h e code
4 s o c k f d = s o c k e t ( AF INET , SOCK STREAM, 0) ;
5 c o n n e c t ( sockfd , ” bank . com” , . . . ) ;
6
7
8 i o c t l ( b i n d e r , IOC WAIT INPUT EVT , &i n b u f f ) ;
9 i f ( i n b u f f . e v e n t == EVT PWD ENTERED)

10 {
11 / / append t h e command f o r t h e bank s e r v e r
12 i n b u f f . t e x t += ’ LOGIN CMD ’ ;
13 / / c a l l a u s e r s p a c e e n c r y p t i o n r o u t i n e
14 / / e s t a b l i s h TLS c o n n e c t i o n and a u t h e n t i c a t e
15 / / u s i n g t h e i d / password t o
16 / / t h e bank
17 send ( sockfd , o u t b u f f , s i z e o f ( o u t b u f f ) ) ;
18 }
19
20 c l o s e ( b i n d e r ) ;
21 c l o s e ( s o c k f d ) ;

Listing 1. Simplified benign code

1 s o c k f d = s o c k e t (PF BLUETOOTH, SOCK DGRAM, 0) ;
2 f d i n = open ( ‘ a r b i t r a r y . t x t ’ , ‘ rw ’ ) ;
3 s e n d f i l e ( sockfd , f d i n , NULL, PAGE SIZE ) ;

Listing 2. System calls executed to trigger null dereference in kernel space

Consider the (simplified for illustration) example app in
Listing 1. The app obtains a handle to the binder device (Line
2), which is used to interact with the UI subsystem. Then,
it opens a socket and connects to the banking server (Lines
4, 5) using a preloaded certificate (line 3) in the code and
then waits for an input event by executing an ioctl IPC on
the binder device (Line 8). When an input is delivered by the
input subsystem, the ioctl returns with the input data. The
app checks whether the data is from a password box, and then
it performs an encryption operation using a userspace library
function (Line 13-15). Finally, the app initiates a handshake
with the banking server using the encrypted packet (Line 16).

On Anception, Line 2 is executed on the host as per the
second principle. Lines 4 and 5 handle network communication
and are serviced by the CVM. Line 8 executes on the host
since the handle came from the host. As per the third principle,
encryption happens in isolated virtual pages on the host (user-
level library code). Finally, the send operation is serviced by
the CVM (Line 16). The file handles are closed on the CVM
(Lines 20-21).

Let us consider how Anception executes a malicious app.
Listing 2 lists the set of system calls executed by CVE-2009-
2692. This exploit works by invoking a null page dereference
(line 3) from kernel space. Under Anception, we execute all
3 system calls in the CVM. The exploit specifies shellcode
by asking the ELF-loader to load some code at the null page.
As all memory pages are managed on the host, when the null
dereference is triggered inside the CVM, the shellcode is not
available and the exploit manages to only crash the CVM. The
host OS remains protected.

Some system calls like memory mapping mmap2(),
fork() and sigaction() do not use abstract handles to
identify their services because they modify process state within

347347



the host kernel. We discuss these next.

D. Redirection Logic

As highlighted in the previous subsection, we want system
calls to be executed on the CVM under the context of the proxy
(e.g., file I/O, network, most IPCs), but some system calls must
be executed on the host (e.g., UI-related). The redirection logic,
which is part of the Anception kernel modifications to Android
on the host, makes that decision. Fortunately, the execution
environment of an Android app is well-defined in terms of the
file, network, IPC and memory operations allowed. Developers
use a specific API to ensure a well-behaved app according
to the best practices5. Below, we consider major classes of
system calls and how the redirection logic handles them, so as
to provide correct API semantics to the apps.

File I/O. The Android file-system is partitioned into a read-
only part containing system code and a read-write part guarded
by UID-based permissions for apps to use. Each app has its
own directory (/data/data/package.name) on the read-
write part and no one else may access the contents except the
app itself6. On Anception, following Principle 1, we load the
shared libraries from the host’s read-only file system. Accesses
to the app’s data directory, on the other hand, are redirected
to the CVM. If there is initial data packaged with the app,
during installation this is unpacked to the app data directory.
Anception copies over this data to the CVM as part of the
app enrollment procedure. At runtime, any new files created
or existing files that are modified exist only in the CVM due
to redirection. Accesses to devices, with few exceptions such
as handling interactions with the Window Manager via binder,
are directed to the CVM.

UI operations. Android apps request UI operations through
an IPC on the WindowManager that is a centralized entity
for frame buffer management. The requests are identified by
inspecting the IPCs issued by an app. Anception services all
such operations on the host.

Network I/O. If an app wishes to perform network I/O
(including local sockets), all such operations are serviced by
the CVM. A socket open request results in a handle on the
CVM, which is passed back to the host. Operations on that
handle (e.g., send) are marshaled and passed back to the CVM.
That also implies that the CVM’s external connectivity can be
controlled from the host by firewall rules, if desired.

IPC. Android provides a custom capability-based binder
IPC mechanism that simulates a synchronous procedure call
across processes. Anception transparently bridges IPCs orig-
inating from the host destined for the CVM. Apps also use
binder IPC to talk to other apps. We allow such IPCs to proceed
on the host. Traditional IPC mechanisms such as unix domain
sockets are supported similar to Network I/O.

Memory-mapped files. Anception executes the memory
mapping in the proxy’s address space and temporarily pins
those pages (after forcing read faults to ensure the data was
demand paged). In the meantime, we perform a null mapping
on the host by extending the brk of the app by the same amount
of pages the memory mapping takes. We then copy page data

5Available at http://developer.android.com/guide/index.html
6sharing can occur if apps share a UID

from the proxy to the app via efficient remapping of pages.
Write-back is used when data has to be synchronized with
the CVM, for example, the msync operation. In this way, we
avoid transferring every page fault back to the CVM.

Fork/Clone and exec. Fork/Clone is replicated on the
proxy as well since Anception maintains a one-to-one corre-
spondence between host processes and proxy processes. When
the fork/clone executes on the host, the child is assigned
to the CVM too. An app cannot escape the CVM through
fork/clone/exec calls.

Nothing special needs to be done to the proxy on an exec
system call. The proxy continues to store the resource handles.
The host process executes the new code. Code that is a system
binary is simply executed on the host since the host’s version
is identical to the guest’s. Code that is user-generated is first
copied out from the guest to a special execution cache on
the host that is not accessible to the untrusted app, and then
executed from the execution cache. The reason for this is that
we don’t want the app to trick the system into copying an
executable to a restricted location. Expressing the policy this
way is much cleaner.

System Management. Dangerous calls like insmod,
rmmod, shutdown, ptrace [10] and others relating to
whole system management are denied to applications because
no user downloaded app should ever invoke these. Android
security model denies them as well.

IV. IMPLEMENTATION

Anception prototype runs on a Samsung Galaxy Tab with
Android 4.2 and Linux Kernel 3.4. We added two new kernel
modules, one each for the host and the guest. The lguest [40]
hypervisor provides the virtualization technology, although
other hypervisors can be used. The detailed architecture is
shown in Figure 4. The CVM is a headless Android instance
and it executes app proxies. Anception sits at the host kernel’s
system call interface and is implemented in approximately
5200 lines of code.

1) Host-Guest Communication. Anception marshals sys-
tem call data (including pointers) into a host kernel buffer. The
marshaled data is copied over to a set of pages (Figure 4) that
are remapped (using the kmap function) from the guest kernel
space. Note that the guest, being unprivileged, cannot map
memory outside the assigned region. The guest uses a hypercall
mechanism to signal the host. The host injects interrupts into
the guest kernel to signal the guest. Combining these two
techniques, Anception implements a controlled communica-
tion channel between the CVM and the host. Our previous
prototypes investigated other forms of communication such as
sockets [16] and virtio [41] but they exhibited high overhead
due to unnecessary data copy operations.

2) Anception System Call Interception Method (ASIM).
System call interception is used for a variety of purposes
[23], [21]. Anception uses the technique to capture calls and
forward them to the CVM. We investigated existing methods
of interception such as ptrace, ftrace, dtrace and kprobes.
Anception’s first prototype used UML and ptrace but the
overhead was grievous (upwards of 60x). kprobes is not ideal
for our use-case because we are only interested in specific
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processes system calls and not the whole system. Instead,
Anception introduces a one byte field in the task_struct
of a process. We patch the system call handler (Figure 5) to
inspect this field, known as RE, or the redirection entry. If
its value is non-zero, we index an alternate system call table
containing stubs that point to the CVM. The stubs perform
marshaling, pointer translation and make use of the page-
sharing scheme described above. Using a single byte, we
can virtualize the entire system call table of a process with
negligible overhead (Section VI-A).

3) Efficient Call Execution. When a call is received by
the guest kernel, we need to schedule it on the correct proxy
for execution. Naively, one would notify a proxy and transfer
the call data from guest kernel to the proxy userspace. Then
the call would be issued, for a total of 4 context switches.
Instead, Anception forces the proxy to be in an interruptible
sleeping wait in guest kernel space. So, when a call comes, in,
we post the call data (after rewriting pointers if necessary) to
the proxy, that is waiting already in kernel space. It executes
the call from its context, and returns the result, all in kernel
space, thus saving 4 context switches.

4) Headless Android. We built a headless Android version
that runs in the CVM. The display devices were removed,

along with the set of services related to the UI such as the Win-
dowManager and InputMethodManager. This design reduces
memory pressure on the host when running the CVM because
no memory is reserved for framebuffers by the headless CVM
instance.

5) Device support. As a proof of concept, we implemented
a virtual storage and network device within the guest. Addi-
tional device support can be added using existing virtualization
techniques. An option is to build a virtual device node in the
guest and a bridge-driver to the host similar to the virtual
network device. Another option is to use Xen-style virtual-
ization or device namespaces [5], [45] and directly assign the
hardware device to the CVM. A third option is virtualization
at the device file layer [4].

V. SECURITY EVALUATION

We performed a qualitative and quantitative evaluation of
the security guarantees provided by Anception. First, we ana-
lyzed previously reported Android vulnerabilities that do local
privilege escalation to determine their effect under Anception.
Second, we compute the number of system calls redirected
to the CVM and quantify the reduction in attack surface of
the host. Third, we quantify the amount of lines of code
deprivileged by Anception’s design. Lastly, we measure the
size of Anception’s trusted code base.

A. Case Studies

We present examples of how Anception defeats different
classes of privilege escalation attacks that aim to break app
isolation.

1) Kernel level bugs: These types of bugs provide kernel
code and memory access to unprivileged processes. For in-
stance, a buggy driver’s device file could be left world-readable
and world-writeable. Specifically, the kernelchopper exploit
(CVE-2013-2596) [31] accessed kernel memory by mapping
the /dev/graphics/fb0 device node and then performed
code injection into the mapped kernel memory. On Anception,
the attempt to open the device node would be redirected to the
CVM and then fail in the CVM because the CVM does not
provide framebuffer access.

2) Privileged userspace bugs. The userspace runs different
privileged (uid 0) code and services that have been exploited
by malware [22], [37]. An example is the GingerBreak exploit
that targets the volume daemon (vold). The vold listens on a
netlink socket whose permissions were configured incorrectly
allowing anyone to send messages. A function in the code also
has a overflow vulnerability that permits a local attacker to
perform code injection. On Anception, the CVM provides an
alternate execution environment. Therefore, communication of
shellcode to the vold is redirected to the CVM environment
and the exploit manages to perform a code injection on the
CVM-version of vold. The host is safe at this point. A
detailed walkthrough appears later in this section.

In the above attacks, it is possible that an exploit compro-
mises the CVM. But, as discussed in Section III, stealing data
from other well-designed applications running on the CVM
is still difficult because the CVM does not have access to
the memory pages of the apps or their UI events. Integrity,
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however, is not guaranteed. For example, the CVM can return
bad results from system calls [12].

If an exploit gains root access or control of the CVM, it
is then restricted to the privilege of the CVM. It cannot map
pages outside its assigned memory or even access a display
device.

B. Vulnerability Study

The CVE database for exploits involving Android contains
a significant number of reported vulnerabilities that are root
exploits or other serious attacks that attempted to gain control
of the entire system. Of the 25 such vulnerabilities since
2010 that we located, three of them targeted privileged system
services only to obtain root access and the remaining 22
targeted kernel interfaces to escalate their privileges. Out of
25, our detailed analysis of their attack vector showed that
eight would have acquired root on the unprivileged CVM only
(and thus not be able to read memory pages of other apps
or monitor their UI interactions). Fifteen of these would have
failed completely to compromise anything. One such example
is the Exploid vulnerability that first creates a special file on the
filesystem and then invokes the kernel hotplug functionality.
With Anception, the file is created on the CVM, but the
kernel hotplug executes on the host, thus the exploit fails to
accomplish anything. Our findings were that only 2 out of 25
of the vulnerabilities would have resulted in root access on the
host, but the exploits would have been easily detectable and
thus preventable with simple checks at the system call interface
on both Android and Anception (see Section V-A for further
details). Due to space constraints, we document our analysis
at http://goo.gl/brEbjW.

It is interesting to compare the above results with classical
virtualization in which all apps run in an unprivileged guest.
In that case, all of the above vulnerabilities could have ended
up compromising the guest, but not the host OS. While this
prevents host OS compromise, this would not have protected
the virtual memory or UI interactions of other apps within
the same guest. The key insight here is that it is important to
protect apps from each other with a smaller trusted base, not
just the OS from the apps.

C. Example Exploit Walkthrough – Gingerbreak

Gingerbreak is a local privilege escalation based on a
negative integer array access in vold, the volume manager on
Android. It has been used by a number of malware applications
[29] as a method to gain superuser privileges and nullify the
Android security model. Below, we summarize the steps that
a malicious app with Gingerbreak takes and the actions that
occur when that app is running on Anception.

1) Gingerbreak starts out by making a copy of itself
by reading /proc/self/exe and writing to the
malicious app’s private directory. With Anception, the
write will be redirected to the app’s private direc-
tory, which is an identically named and configured
directory in the CVM. Thus, a copy of the exploit’s
executable will be made in the CVM.

2) The exploit then proceeds to its information gather-
ing stage. The first step here is to find the vold
daemon by its process identifier. It does this by

opening /proc/net/netlink. With Anception,
this open system call will be redirected to the
CVM and the exploit will read the CVM’s runtime
information of the netlink environment. We have an
identical environment in the container.

3) The exploit then searches procfs for
/system/bin/vold and makes a note of the
corresponding PID. Note that now, the Gingerbreak
exploit executing on the host has obtained the PID
of the vold executing inside the container.

4) The exploit proceeds to find the address of system
and strcmp inside /system/bin/libc.so. As
applications execute on the host, and any useful
application will use libc, Anception simply allows
opens and reads to execute on the host for such
system code libraries.

5) The exploit, in the next stage of information gather-
ing, attempts to find the Global Offset Table (GOT)
start address of vold. The Gingerbreak exploit does
this by opening the vold executable and using the
ELF-32 API to parse it. The exploit then looks for
the last piece of information to find the storage device
that vold manages. System files are involved in the
reading process and as per our rules, we let them go
through on the host itself since these files are read-
only.

Coming to the actual privilege escalation, Gingerbreak
needs to find the negative index value to send to vold so
as to achieve code execution. It uses a brute force approach
by trying values in a range and then scanning the logcat crash
logs for failed attempts. The exploit creates its own logcat log
file (which is redirected and created in the app’s container),
kills logcat (which is mirrored in the app’s container as well),
and then restarts it by specifying its own file as the log file (also
restarted in the app’s container). Note that as per Anception’s
rules, when a fork/exec occurs, we simply let the fork happen
on the host, but the new process is bound to the app’s container;
the sandbox is extended to the forked process. Since the new
logcat is bound to app’s container, it sends its output to a file
that only exists in that container.

Once an index has been calculated, Gingerbreak forms a
netlink message and uses socket calls to talk with the vold
process. With Anception, Gingerbreak sends shell code with
the negative index to vold inside the container. This causes
vold to execute the exploit binary that was copied into the
container. The exploit always checks on execution whether its
uid is 0. Since vold started it the second time in the container,
the root check succeeds and the exploit has succeeded inside
the container VM. At this point, if the exploit tries to corrupt
the virtual memory of an app, it will issue reads/writes on
a target app’s /proc/pid/mem. On Anception, the exploit
ends up reading the memory of the proxy and not the real app.

D. Attack Surface and TCB

Host system call interface. Anception reduces the attack
surface of the host kernel presented to apps by executing
many of the system calls on the CVM. To quantify this,
we analyzed 324 Linux system calls. Using our redirection
logic, Anception redirects 70.7% (file, network, IPC) calls
and executes 20.4% (process control, signal handlers) on the
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host always. Anception executes part of the functionality of
6.5% of the system calls on both the host and the CVM
(e.g., fork, mmap), as described in Section III-D. Finally, we
block 2.1% (module insertion, shutdown) calls since they are
outright malicious if executed by an app. This is more of
an optimization to save round trips to the CVM, where, if
redirected, these calls would have no effect.

UI/Input system exploits. Anception trusts the UI system.
In our case, the UI system’s attack surface is the set of types
of ioctl calls an application may invoke on the window
managers. We have not found any attacks via these IPC calls
to the UI/Input and lifecycle management services. We did find
exploits involving direct access of the frame buffer [31]. As
we have shown in Section V-A, such calls are redirected to the
CVM.

Anception runtime. A large percentage of Anception’s
code marshals and unmarshals data. Concretely, out of 5219
lines of C code (measured using sloccount), 2438 lines deal
with marshaling and unmarshaling (46.7%). The remaining
lines deals with bookkeeping such as maintaining process
state and memory maps. Automated techniques can instead
be used to generate the marshaling/unmarshaling code from
an interface specification.

Number of deprivileged lines of code. Anception de-
privileges a significant portion of the kernel and framework
services. We analyzed the Android framework and present a
conservative lower bound on the number of lines deprivileged.
All measurements were made on Android 4.2 and Linux
kernel 3.4. Privileged framework services are 181,260 lines of
code. Services related to UI, input and lifecycle management
comprise 72,542 lines. Anception’s current implementation
deprivileges approximately 60% (108,718) of Android privi-
leged service code. We also obtained rough estimates on the
number of lines deprivileged within the linux kernel for the
filesystem and the network. fs/ext4 contains 26,451 lines
of code, while fs/ contains 725,466 lines of code. Similarly,
net/ipv4 contains 59,166 lines and net/ contains 515,383
lines of code. Thus, Anception deprivileges approximately 1.2
million lines of kernel code related to the file system and
network.

VI. PERFORMANCE EVALUATION

We quantify performance using several popular bench-
marks available from the Play Store. These benchmarks test
Disk I/O, 2D/3D graphics, CPU and memory performance and
are used by systems in the literature. We also execute mi-
crobenchmarks to quantify the overhead introduced by system
call interception and host ↔ guest context switching, which we
term as world switching. All experiments are run on a Samsung
Galaxy Tab 10.1 hosting Android 4.2 with 1GB of RAM,
a 1.6GHz processor and 64MB physical memory assigned
to the CVM. All readings are averaged over 5 runs of the
benchmark unless stated otherwise. Each benchmark averages
results internally as well. For example, our microbenchmarks
allow sufficient time for the caches to warm up before making
timing measurements.

Active-set of apps. The benchmarks reported below were
run concurrently with the standard set of Android 4.2 apps
that launched at boot. Based on the official Android source

syscall Native Anception
Null call – getpid 0.76 μs 0.76 μs
Filesystem – write (4096B) 28.61 μs 384.45 μs
Filesystem – read (4096B) 6.51 μs 305.03 μs
Binder IPC – ioctl (128B) 12 ms 31 ms

Binder IPC – ioctl (256B) 12 ms 31.3 ms
TABLE I. ASIM LATENCY

code (4.2), these apps are: home screen, launcher, contacts
(and its provider process), photo gallery, dialer, MMS and
settings. Vendors customize this list and add more apps. On our
Samsung Galaxy tab, there were a total of 23 apps (including
standard apps) in the active-set when our benchmarks were
run. We did not kill the active-set since it closely resembles
real world usage of the device were multiple apps are present
in the executing state.

A. Microbenchmarks

We measured the overhead introduced by ASIM using
the getpid syscall. For this purpose, getpid call executes on
the host and does not involve any world switching. The
first row of Table I shows that the ASIM is very efficient
and introduces negligible overhead. We then measured the
performance of read and write syscalls to quantify the overhead
due to world switching. The benchmark writes (reads) 16
MB of data to (from) the internal storage of the device. The
results are indicated in the Table I below. Apart from the world
switching latency, part of the increase in latency is attributed
to chunking behavior in the data transfer channel as we can
only accommodate fixed sized buffers7 for transfers between
the host and guest. Our current configuration chunks data into
4096 byte packets.

A slowdown on a system call is experienced only when
a call is serviced in the CVM; when an app is not making
a system call, i.e., only running user-level application code,
it runs at native speed. Furthermore, UI-related system calls,
which all occur via ioctl() system call on Android, run at
essentially native speed since they are not redirected because of
security reasons. Not redirecting UI-related system calls also
helps performance. Using ProfileDroid [44], we found that
approximately 58.7% to 80.1% (average = 73.7) of system
calls made by popular apps are ioctl calls. After performing
an additional custom profiling of only ioctl calls, we found
that 81.35% of such calls are UI-related and thus will run at
native speed.

IPC and filesystem calls serviced in the CVM experience
a slowdown, though the overheads appear acceptable. For
example, an IPC call to get a GPS fix will return with an added
latency of 19 ms. Regarding file I/O microbenchmarks, the
additional latency appears to have minimal impact at the macro
level, possibly because of extensive memory-buffering that
occurs in filesystems. The macrobenchmarks below to evaluate
SQLite database performance, which is used extensively in
Android by many apps, validates this.

B. Macrobenchmarks

We used AnTuTu [6] (v2.9.4) to evaluate Anception per-
formance on app-oriented DB workloads (see Figure 6). An-
ception’s score was only 3% lower than with native Android,

7We can increase buffer sizes based on profiling information
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suggesting that the I/O performance hit at the microbenchmark
level is largely masked by memory buffering that occurs within
the filesystem and within SQLite. Earlier studies of Android
have shown that SQLite database I/O is typically the bulk of
the filesystem I/O by apps on Android. So, we believe that
deprivileging filesystem code by executing system calls on the
guest is the correct design decision. If I/O latency were to
matter in some context, one could choose to keep filesystem
I/O on the host side (while still keeping rest of the code in the
CVM deprivileged).

We also ran additional AnTuTu [6] macrobenchmarks as
well as SunSpider [42] benchmarks, which test Anception’s
ability to run unmodified, graphics-rich applications. For the
AnTuTu benchmark, Anception’s overall score is 2.8% less
than native Android. Detailed results on individual tests appear
in Figure 6. Anception’s performance was close to native on
2D and 3D tests (Figure 6). On the SunSpider benchmark An-
ception’s performance was essentially indistinguishable from
native Android (Figure 7).

We ran a sqlite benchmark that wrote 10,000 rows (each
row is 26 bytes) of data within a transaction. Given that 90%
of write requests on a smartphone are to a sqlite DB [28], and
a further 64% of I/O operations less than 4KB in size [28],
we feel this is a good characterization of normal smartphone
file I/O workload. The time to execute the benchmark on
Anception is 86.67 μs (SD = 1.17) compared to 86.55 μs (SD
= 2.0) for native Android. Thus, Anception’s performance is
virtually indistinguishable from native.

C. Memory Overhead

Anception’s unique design enables us to execute headless
Android within the CVM. We have found empirically that
assigning 64MB to the CVM allows proper operation (typical
Android devices have 1 – 4GB RAM). Note that the version of
Android executing in the CVM is a stock version of Android
minus the UI code. The active memory used is 25460 KB
± 524.54 KB out of 49228 KB available on average, i.e.,
almost 51% of assigned memory is available for use by proxy
processes. A proxy process is much smaller than the actual
process running on the host and thus Anception supports
multiple proxies in the CVM comfortably.
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VII. DISCUSSION

High assurance apps can store cryptographic keys in their
read-only code that is protected by Anception from other
apps and the CVM. However, Anception’s architecture makes
it possible to transparently provide encryption to any app.
All that is required is to provide each app a transparent
cryptographic file-system in the CVM. A per-app key for that
filesystem would reside in the host. An implementation is
to use encfs [18], a user-level encrypting file system based
on FUSE [19]. The app’s data directory would point to an
encrypted file system. The reads/writes from the FUSE layer
to the host OS are redirected as before. The net result is that
the CVM only sees read/write calls that contain encrypted data,
but does not have access to the keys (which reside on the host).

Anception does not rule out Iago attacks [12] on an
application, say the banking app, from the compromised CVM.
Iago attacks are carried out by returning bad system call results
to an app and attempting to corrupt it at run-time and make
it leak unencrypted sensitive data. These attacks are difficult
to craft. The easiest attack vector for this kind of attack
would be to modify the results from file read calls. Using an
encryption wrapper for file system calls, as described earlier
in this section, makes such attacks more difficult.

VIII. RELATED WORK

OS Virtualization. Current research is bringing classical
virtualization to smartphone hardware [27], [15], [17], [8].
Cells [5] is a lightweight (namespaces) approach to virtual-
ization that uses a shared kernel for VMs and is vulnerable
to kernel-level exploits. AirBag [45] builds upon Cells and
uses a single Play Store instance to provide a seamless user
experience. However, both systems run complete Android
stacks in each VM, The key difference with Anception is
that our design deprivileges a large chunk of the trusted base
and delegates it to a container. As we run apps on the host,
but delegate calls to services in the container, we are able
to run a headless OS in the container, thus reducing memory
consumption by design.

Overshadow [13], InkTag [25] and SP3 [47] are systems
aimed at providing virtual memory and disk data confiden-
tiality when the host OS is malicious through the use of
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encryption. Anception provides similar guarantees through
memory isolation and split execution. Anception takes a finer
grained view of the OS and provides confidentiality of UI
interactions.

Library OSes such as DrawBridge for Windows [39]
provide userspace linkable OSes that execute an app in an
isolated environment with a separate kernel. An open research
problem with such systems is providing high performance
graphics. Android, natively provides several mechanisms that
maintain maintain smooth UI performance. Anception’s design
leverages this existing code base to provide high performance
graphics.

ExpressOS [35] is focused on running apps on a small
verified kernel. However, ExpressOS requires that apps fully
trust the data received from the UI stack that is not verified.
Additionally, all privileged system services (UI/Input stack
included) execute in the same VM, thus exposing sensitive
user interactions to malware.

The basic mechanism of servicing system calls in different
kernels has been used in Pods [32], VirtuOS [38], and ProxOS
[43] for other purposes than in this paper, e.g., to improve
server reliability, isolating services, and improving tolerance
against driver bugs. Anception incorporates lessons on system
call interposition tools, and pitfalls in doing that, as described
in [21], [20].

Flicker [36] reduces the trusted base of apps drastically
using AMD-specific processor support and requires developers
to construct Pieces of Application Logic (PALs) that are
secured using hardware primitives. While flicker does promote
better modularity in apps, it requires that apps be modified to
be protected. Anception works with unmodified apps.

Microkernels for smartphones. L4Android is a microker-
nel based OS framework for Android built on the L4 microker-
nel [33]. While microkernels reduce the trusted base of the core
kernel, there are other privileged userspace processes running
that could be leveraged to attack trusted apps. Anception pro-
vides an architecture to further reduce this trusted base using
the lightweight Anception container where even privileged
system processes can be sandboxed away from trusted apps.

App Sandboxing. Providing isolation on Android is cur-
rently focused on policy based approaches. TrustDroid [11]
creates trust domains through framework modifications and
IPC monitoring, AppFence [26] presents fake data to untrusted
apps and Aurasium [46] performs bytecode rewriting to embed
isolation policies in app code. Janus [23] was an early tool
implementing policy based on system call interception, and
seccomp [1] is a more recent version based on similar prin-
ciples. These systems are vulnerable to privileged userspace
bugs and kernel exploits. Additionally, they do not enable a
framework for the design of secure apps. PREC [24] is targeted
at foiling exploits by exponentially slowing down the execution
of system calls from suspicious contexts and relies on building
a profile of normal and abnormal behavior but does not protect
against kernel level exploits and does not reduce the amount
of system-code the app must trust.

File System Isolation. Android recently incorporated a
multiuser feature that helps in setting up multiple user ac-
counts and sharing of a single device. Each user is as-

signed a unique user ID and corresponding directory on the
filesystem (/data/users/ID). When the device switches
to a user, symbolic links are set up from an app’s direc-
tory (/data/data/APP.PKG) to the private user directory.
However, this design is not aimed at isolating malware that
use privilege escalation attacks and does not provide memory
isolation in the event of an OS compromise.

IX. CONCLUSION

Modern operating systems such as Android provide mal-
ware a large attack surface running into hundreds of thousands
of lines of code, consisting of both privileged services and
the operating system kernel. This paper presents a system
architecture called Anception for deprivileging both portions
of the kernel services as well as several system services for
Android with the goal of protecting UI input and virtual
memory of high assurance apps from malware. To achieve that,
we kept security-relevant portions of apps (in particular, UI-
related services, virtual memory, code, and security-relevant
keys) on the host and segregate rest of the app’s functionality
as well as many system services to a guest virtual machine
container. Analysis showed that the Anception architecture
moves significant chunks of privileged code to an unprivi-
leged container and it would have blocked 23 out of 25 of
the previously reported privilege-escalation vulnerabilities on
Android. The penalty for deprivileging code with Anception is
modest. While, as expected, I/O and cross-container IPCs take
a performance hit on microbenchmarks, on macrobenchmarks
and on real applications, the impact is minimal.

X. ACKNOWLEDGMENTS

We thank the reviewers for their thoughtful feedback. This
material is based upon work supported by the National Sci-
ence Foundation under Grant Numbers 093629 and 1318722.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Google chrome security team. seccomp-sandbox. accessed 18 july 2013.
http://code.google.com/p/seccompsandbox/.

[2] Kaspersky Labs. Targeted Trojan Attack stealing personal informa-
tion. http://www.securelist.com/en/blog/208194186/Android Trojan
Found in Targeted Attack.

[3] McAfee Labs. Phishing Attack replaces Banking app with mal-
ware. http://blogs.mcafee.com/mcafee-labs/phishing-attack-replaces-
android-banking-apps-with-malware.

[4] AMIRI SANI, A., BOOS, K., YUN, M. H., AND ZHONG, L. Rio: A
system solution for sharing i/o between mobile systems. In Proc. of the
12th Annual Int. Conf. on Mobile Systems, Applications, and Services
(New York, NY, USA, 2014), MobiSys ’14, ACM, pp. 259–272.

[5] ANDRUS, J., DALL, C., HOF, A. V., LAADAN, O., AND NIEH, J. Cells:
a virtual mobile smartphone architecture. In Proc. of the 23rd ACM
Symp. on Operating Systems Principles (New York, NY, USA, 2011),
SOSP ’11, ACM, pp. 173–187.

[6] Antutu Benchmark for android. Accessed 18 July 2013. https://play.
google.com/store/apps/details?id=com.antutu.ABenchMark.

[7] ARTENSTEIN, N., AND REVIVO, I. Man-in-the-Binder: He who con-
trols IPC, controls the Droid. In Europe BlackHat Conf. (Amsterdam,
The Netherlands, 2014).

353353



[8] BARR, K., BUNGALE, P., DEASY, S., GYURIS, V., HUNG, P.,
NEWELL, C., TUCH, H., AND ZOPPIS, B. The vmware mobile
virtualization platform: is that a hypervisor in your pocket? SIGOPS
Oper. Syst. Rev. 44, 4 (Dec. 2010), 124–135.

[9] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding applications
from an untrusted cloud with haven. In Proc. of the 11th USENIX Conf.
on Operating Systems Design and Implementation (Berkeley, CA, USA,
2014), OSDI’14, USENIX Association, pp. 267–283.

[10] BERNASCHI, M., GABRIELLI, E., AND MANCINI, L. V. Remus: a
security-enhanced operating system. ACM Trans. Inf. Syst. Secur. 5, 1
(Feb. 2002), 36–61.

[11] BUGIEL, S., DAVI, L., DMITRIENKO, A., HEUSER, S., SADEGHI, A.-
R., AND SHASTRY, B. Practical and lightweight domain isolation on
Android. In Proc. of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices (New York, NY, USA, 2011), SPSM
’11, ACM, pp. 51–62.

[12] CHECKOWAY, S., AND SHACHAM, H. Iago attacks: why the system call
API is a bad untrusted RPC interface. In Proc. of the 18th Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2013), ASPLOS ’13, ACM, pp. 253–
264.

[13] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM, P.,
WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND PORTS, D. R.
Overshadow: a virtualization-based approach to retrofitting protection
in commodity operating systems. In Proc. of the 13th Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2008), ASPLOS XIII, ACM, pp. 2–13.

[14] Linux Kernel vulnerabilities: CVE Database. http://www.cvedetails.
com/vulnerability-list/vendor id-33/product id-47/cvssscoremin-
7/cvssscoremax-7.99/Linux-Linux-Kernel.html.

[15] DALL, C., AND NIEH, J. KVM for ARM. In Proc. of the 12th Annual
Linux Symp. (2010), OLS’10.

[16] DIKE, J. User-mode Linux. In ALS ’01: Proc. of the 5th Annual Linux
Showcase & Conf. (Berkeley, CA, USA, 2001), USENIX Association,
p. 2.

[17] Dual Android using Xen. Efficient GPU virtualization. Samsung
R&D UK. http://ftp.osuosl.org/pub/fosdem//2014/UD2120 Chavanne/
Saturday/DualAndroid on Nexus 10 using XEN.webm.

[18] EncFS. http://www.arg0.net/encfs.

[19] Filesystem in Userspace. http://fuse.sourceforge.net/.

[20] GARFINKEL, T. Traps and pitfalls: Practical problems in system call
interposition based security tools. In In Proc. Network and Distributed
Systems Security Symp. (2003), pp. 163–176.

[21] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A delegating
architecture for secure system call interposition. In IN NDSS (2003).

[22] CVE-2011-1823. Gingerbreak. http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2011-1823.

[23] GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A.
A secure environment for untrusted helper applications confining the
wily hacker. In Proc. of the 6th Conf. on USENIX Security Symp.,
Focusing on Applications of Cryptography - Volume 6 (Berkeley, CA,
USA, 1996), SSYM’96, USENIX Association, pp. 1–1.

[24] HO, T.-H., DEAN, D., GU, X., AND ENCK, W. PREC: Practical Root
Exploit Containment for Android Devices. In 4th ACM Conf. on Data
and Application Security and Privacy (San Antonio, TX, March 2014).

[25] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z., AND

WITCHEL, E. InkTag: secure applications on an untrusted operating
system. In Proc. of the 18th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA,
2013), ASPLOS ’13, ACM, pp. 265–278.

[26] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND WETHER-
ALL, D. These aren’t the droids you’re looking for: retrofitting Android
to protect data from imperious applications. In Proc. of the 18th ACM
Conf. on Computer and communications security (New York, NY, USA,
2011), CCS ’11, ACM, pp. 639–652.

[27] HWANG, J. Y., SUH, S. B., HEO, S. K., PARK, C. J., RYU, J. M.,
PARK, S. Y., AND KIM, C. R. Xen on ARM: System virtualization
using Xen hypervisor for ARM-based secure mobile phones. pp. 257–
261.

[28] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y. I/o stack
optimization for smartphones. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (Berkeley, CA, USA,
2013), USENIX ATC’13, USENIX Association, pp. 309–320.

[29] JIANG, X. GingerMaster malware on Android. http://www.csc.ncsu.
edu/faculty/jiang/GingerMaster/.

[30] Kaspersky Security Bulletin for 2013. https://www.securelist.com/
en/analysis/204792318/Kaspersky Security Bulletin 2013 Overall
statistics for 2013.

[31] Kernelchopper/Motochopper exploit. http://forum.xda-developers.com/
showthread.php?t=2255491.

[32] LAADAN, O., AND NIEH, J. Operating system virtualization: practice
and experience. In Proc. of the 3rd Annual Haifa Experimental Systems
Conf. (New York, NY, USA, 2010), SYSTOR ’10, ACM, pp. 17:1–
17:12.

[33] LANGE, M., LIEBERGELD, S., LACKORZYNSKI, A., WARG, A., AND

PETER, M. L4android: A generic operating system framework for
secure smartphones. In Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices (New York,
NY, USA, 2011), SPSM ’11, ACM, pp. 39–50.

[34] levitator. Jon Larimer and Jon Oberheide. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2011-1352.

[35] MAI, H., PEK, E., XUE, H., KING, S. T., AND MADHUSUDAN, P.
Verifying security invariants in ExpressOS. In Proc. of the 18th
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2013), ASPLOS ’13, ACM,
pp. 293–304.

[36] MCCUNE, J. M., PARNO, B. J., PERRIG, A., REITER, M. K., AND

ISOZAKI, H. Flicker: An execution infrastructure for tcb minimization.
In Proc. of the 3rd ACM SIGOPS/EuroSys European Conf. on Computer
Systems 2008 (New York, NY, USA, 2008), Eurosys ’08, ACM,
pp. 315–328.

[37] mempdroid exploit. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-0056.

[38] NIKOLAEV, R., AND BACK, G. VirtuOS: an operating system with
kernel virtualization. In Proc. of the 24th ACM Symp. on Operating
Systems Principles (New York, NY, USA, 2013), SOSP ’13, ACM,
pp. 116–132.

[39] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY, R.,
AND HUNT, G. C. Rethinking the library os from the top down. In
Proc. of the 16th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2011),
ASPLOS XVI, ACM, pp. 291–304.

[40] RUSSEL, R. lguest: Implementing the little Linux hypervisor. In OLS
’07: Proc. of the Linux Symp. (June 2007), vol. 2, pp. 173–178.

[41] RUSSELL, R. virtio: towards a de-facto standard for virtual i/o devices.
SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 95–103.

[42] SunSpider Benchmark for android. Accessed 18 July 2013. https://
www.webkit.org/perf/sunspider/sunspider.html.

[43] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces: making trust
between applications and operating systems configurable. In Proc. of the
7th Symp. on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2006), OSDI ’06, USENIX Association, pp. 279–292.

[44] WEI, X., GOMEZ, L., NEAMTIU, I., AND FALOUTSOS, M. Profile-
Droid: multi-layer profiling of Android applications. In Proc. of the
18th Annual Int. Conf. on Mobile Computing and Networking (New
York, NY, USA, 2012), Mobicom ’12, ACM, pp. 137–148.

[45] WU, C., ZHOU, Y., PATEL, K., LIANG, Z., AND JIANG, X. AirBag:
Boosting Smartphone Resistance to Malware Infection. In Proc. of the
Network and Distributed System Security Symp. (NDSS) (San Diego,
CA, February 2014).
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