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ABSTRACT
Services like Google Now on Tap and Bing Snapp enable new user
experiences by understanding the semantics of contents that users
consume in their apps. These systems send contents of currently
displayed app pages to the cloud to identify relevant entities (e.g., a
movie) appearing in the current page and show information related
to such entities (e.g., local theaters playing the movie). These new
experiences come with privacy concerns as they can send sensitive
on-screen data (bank details, medical data, etc.) to the cloud. We
propose a novel approach that efficiently extracts app content se-
mantics on the device, without exfiltrating user data. Our solution
consists of two phases: an offline, user-agnostic, in-cloud phase
that automatically annotates apps’ UI elements with stable seman-
tics, and a lightweight on-device phase that assigns semantics to
captured app contents on the fly, by matching the annotations. With
this automatic approach we annotated 100+ food, dining, and music
apps, with accuracy over 80%. Our system implementation for An-
droid and Windows Phone—Appstract—incurs minimal runtime
overhead. We built eight use cases on the Appstract framework.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; •Information systems→ Specialized
information retrieval;

Keywords: Mobile applications; Entity extraction; Entity tem-
plates.

1. INTRODUCTION
Understanding the semantics of contents users consume in their
apps enables new user experiences. This is evidenced by two re-
cent services: Google Now on Tap [16], and Bing Snapp [40]. For
instance, a user listening to a song in Spotify can invoke Now on
Tap to experience features not provided by Spotify itself—e.g., an
augmented “card” with the song’s lyrics and options to purchase
the song. These services work by sending current screen content to
their cloud backend, which uses information retrieval techniques to
extract key entities (e.g., a specific song) and entity types (e.g., song
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title), with the goal of understanding user context and intent. In re-
sponse, the cloud backend can then send information and actions to
the client which are relevant to current in-app activity.

We expect to see many such experiences that leverage the seman-
tics of contents consumed by users inside apps. Some examples
are: (1) Contextual menus: A user highlights some text in an app,
say “12 140th Ave NE, Portland”, and the OS, understanding that
the highlighted text is an address, brings up a menu to view it in a
map; (2) Personalization: In Yelp, the user often selects restaurants
in the “Italian” category, and the app store, by leveraging user’s
historical interest in Italian food, can suggest Italian food/recipe
apps; (3) Content mash-up: A user books a hotel and views restau-
rant pages using Expedia and Open Table, respectively. The user’s
app automatically creates a trip itinerary by mashing up hotel-type
and restaurant-type information that the user viewed and interacted
with, through clicks on “Book” and “Like” buttons.

At the core of these experiences is the task of identifying enti-
ties along with their types, which appear in app pages during user
interaction. One implementation option is cloud-based, as in Now
on Tap. However, the cloud backend can see sensitive user data
such as financial or health information appearing in a finance or in
a health app, making it “big-brother freaky” [43]. As more services
like Now on Tap emerge, provided by both first- and third-parties,
we expect increasing privacy concerns. Now on Tap tries to ad-
dress these issues in two ways: (1) It requires the user to manually
invoke it when additional information or suggestions related to the
current activity are desirable; however, such an approach precludes
the useful scenarios that require continuous profiling of a user. (2)
It allows app developers to disable Now on Tap for the entire app;
but this approach excludes also non-sensitive parts of the app. Be-
sides the loss in functionality, these point-solutions still do not ade-
quately address privacy concerns. Since it is easy to invoke Now on
Tap by long tapping the home button, users can mistakenly invoke it
while sensitive information is displayed on screen. App developers
often do not explicitly disable Now on Tap even if the app contains
sensitive data. Out of 1000 top Android apps we analyzed, only 45
explicitly disabled Now on Tap (§2.1). Only 2 of 100 medical apps
disabled Now on Tap, thus allowing it to acquire possibly sensitive
data like medical conditions or medications.

We explore techniques for extracting semantics (e.g., entity
types) of on-screen app contents without sending the contents to
the cloud. We develop an on-device technique that is less privacy
invasive than a cloud-based one, as no user data leaves the device.
Moreover, it is more efficient. Our measurements on 33 top An-
droid apps show that each invocation of Now on Tap sends 6.8 kB
on average (up to 37.2 kB maximum) to the cloud, a nontrivial
overhead that our on-device approach can avoid. Moreover, these
privacy and efficiency benefits make our solution suitable for sce-



narios requiring continuous monitoring of in-app activities.
A key challenge that we must address is how to efficiently, con-

tinuously, and instantaneously associate semantics to screen con-
tents (e.g., that some text appearing in an item in a List in the UI
is a RestaurantName), without exfiltrating user data to the cloud,
and without developer effort—app developers could manually an-
notate apps to provide semantic information, but this would require
them to annotate hundreds of UI elements for each page in the app,
making it impractical.

Our key insight lies in the unique structural properties of mo-
bile apps. We observe that for many apps, pages are usually in-
stantiated from a small number of page classes, whose UI layout
remains the same across user interactions (e.g., in a restaurant app,
the page “RestaurantDetails” might display information for differ-
ent restaurant entities but always with the same UI layout). More-
over, many UI elements in those UI layouts contain single entities
(e.g., a TextBlock contains the name of one restaurant). This makes
it possible to annotate the semantics and relationships between the
UI elements of an app page offline once—such annotations remain
valid at runtime. These observations lead us to a two-phase solu-
tion: (1) In the offline, user-agnostic (in-cloud) phase, we use novel
techniques to analyze a large corpus of app contents to automati-
cally identify entity types and entity relationships of various textual
UI elements of an app. The entity types and relationships are then
encoded into entity templates (i.e., mappings between UI elements
and entity types/relationships for each page class of the app). (2)
In the lightweight, online (on-device) phase, we assign semantics
to captured app contents by simply matching the contents of an app
page with the corresponding entity template.

This approach achieves better privacy in two ways. (i) The of-
fline phase is user-agnostic, so assuming that the semantics pro-
vided by entity templates fulfill the scenarios’ needs, no user data
leaves the device. (ii) If the scenario requires remote process-
ing, the type and amount of data sent out can be selectively con-
trolled through templates. Assume a user configures her device to
not share finance-type data (e.g., bank account number). While
chatting with her bank assistant in the bank app, she may invoke
Now on Tap to retrieve the definition of a legal term, and Now on
Tap may use the template to filter out texts of non-permitted entity
types.

Although our on-device solution is not as universal as the cloud-
based approach of Now on Tap, it covers many scenarios (including
some of Now on Tap) with better privacy guarantees. Overall, this
paper makes the following contributions. First, while the idea of a
hybrid architecture using app models has been used before [10], a
key contribution of this work is the automatic generation of entity
templates (§4), which allows us to scale to many apps from differ-
ent categories. Note that existing techniques for automatic extrac-
tion of web entities do not work with mobile apps (see §2.2). Sec-
ond, we support our design with an app analysis revealing impor-
tant structural properties of modern apps (§3). Third, we provide a
complete system, called Appstract, implemented both on Android
and Windows Phone, including a declarative API for subscribing to
app events and retrieving user history (§5.1). Finally, we implement
eight use cases including new OS features (e.g., contextual notifi-
cations), extensions to existing first- (e.g., Cortana) and third-party
apps, and new types of apps like information mash-ups (§5.2).

2. MOTIVATION
We motivate the need for an approach for extracting semantics of
in-app content which provides better privacy. We use Now on Tap
as an example of cloud-based service existing today, which relies

App category # apps tested # apps with Now on Tap disabled
Social 100 3
Travel/Local 100 3
Finance 100 17
Medical 100 2
Health/Fitness 100 4
Shopping 100 4
Education 50 1
Entertainment 50 3
Music/Audio 50 0
Lifestyle 50 1
Business 50 5
Personalization 50 0
Tools 50 1
Books/Reference 50 1
Total 1000 45

Table 1. Android apps with Now on Tap disabled.

on in-app semantics extraction. However, many such services pro-
vided by both first- and third-parties are likely to emerge in the near
future. In fact, Bing Snapp running on Android phones can already
be considered a third party service of such kind. As this ecosystem
of semantics-based services grows and the supported user experi-
ences diversify, we expect increasing privacy concerns.

2.1 Analysis of Google Now on Tap
Now on Tap (as well as Bing Snapp) sends on-screen content to
the cloud backend. As mentioned in §1, it addresses privacy con-
cerns by (i) relying on user’s permissions, and (ii) relying on app
developers. We now discuss these options.
Is explicit user consent enough? Android allows disabling Now
on Tap for the entire device, but several user studies have shown
that user-based permissions are ineffective, even with additional
text warnings [20, 14, 9]. Now on Tap is activated only upon ex-
plicit user invocation (a long tap), with the hope that a user invokes
it only when the screen does not have any sensitive information.
However, it is relatively easy to mistakenly invoke it (e.g., by tap-
ping the home button longer than intended, thus resulting in a long
tap). A user may not be aware of which data is actually transmitted
(e.g., if lots of content is present on the screen). A long tap action
can be associated with other services as well (in system settings),
so a user may not even realize that a long tap will start Now on Tap.
Finally, an explicit consent model does not fit scenarios requiring
continuous app data profiling.
Are app developers protecting user privacy? Developers of apps
running on OSes with services similar to Now on Tap have the op-
tion of disabling screen content capture for app pages they deem
to be sensitive. While this form of privacy control does prevent
the user from enjoying the benefits of services like Now on Tap,
privacy is preserved. We conducted measurements to determine
the prevalence of this form of privacy control. We selected 1000
top Android apps, including 400 top apps from the Google Play
top 8 categories [5], and the top 100 apps from privacy sensitive
categories (Medical, Finance, Health & Fitness, Travel & Local,
Social, and Shopping), and counted the number of apps that ex-
plicitly disabled Now on Tap on some of their pages (by setting
FLAG_SECURE on the window). As shown in Table 1, across all
14 categories, only 45/1000 apps have disabled Now on Tap. Only
17% of financial apps, and 2% of medical apps have Now on Tap
disabled on some pages. We conclude that while some developers
make the privacy-conscious decision of opting out of services like
Now on Tap, a large majority rely on the user being constantly able
to protect the privacy of information such as bank details, medical
conditions, and contacts.



  

Figure 1. Three app screens with the same “San Fernando" restau-
rant entity. In-app content varies from structured (app view on the
left) to unstructured (app view on the right).

Is data exposure needed from a system point of view? Services
like Now on Tap and Bing Snapp work as follows.

1. Screen content capture: They capture app contents by taking
a screenshot or by capturing textual contents on the screen
via accessibility APIs.

2. Semantics inference: They send the logged raw data to the
cloud backend for semantics inference. For instance, in Fig-
ure 1, semantics inference means associating the strings “San
Fernando” and “900 Rainier Ave...” to their entity types
(RestaurantName and Address, respectively), and grouping
them based on their entity relationships—“San Fernando”
and “900 Rainier Ave...” are related to the same entity. Clicks
on “Call” or “Menu” buttons are actions that must be recog-
nized as belonging to the same entity group.

3. Entity linking: Finally, they use the extracted data and se-
mantics to look up an entity stored in their knowledge graph.

Now on Tap overlays informative cards that use both entity types
and entity linking. For example, based on the entity type of “San
Fernando”, the card can show an option to make a reservation, and
based on entity linking, it can show Google reviews of the restau-
rant. Entity linking requires a large knowledge base, hence cannot
be on-device.

However, in many scenarios (see §1 and §5.2), entity linking is
not required. Services like Now on Tap too, may only require en-
tity linking to assemble a card with a restaurant profile or with a
song’s lyrics, but do not require entity linking to overlay a card of-
fering driving directions to a restaurant’s address appearing on the
screen—recognizing that the text is of type Address is sufficient.
Motivated by this observation, we argue that if the second step of
semantics inference can be performed on the device, no user data
needs to be exposed. A complete service may still send user data to
the cloud for entity linking purposes, possibly compromising user
privacy. However, this is out of scope for Appstract.

2.2 On-device Semantics Extraction
We aim to design a system capable of continuously capturing
semantically-meaningful information about a user’s in-app activi-
ties, with the following properties: (i) On-device: Local processing
avoids any possible privacy leaks due to sending sensitive data to
the cloud. (ii) Ease of use and deployment: The solution should
require minimal developer and user effort. It should be compati-
ble with existing mobile platforms and apps. (iii) Scalability: It

#Entities/#Words Entity type %Prec. %Recall %F1 score
37,018 / 370,022 RestaurantName 56.4 21.5 25.2

Cuisine 74.5 15.4 25
Address 81.8 64.7 62.8

53,594 / 281,526 RecipeName 55.7 22.9 26.3
DishType 59.3 19.6 29.3
Cocktail 99.85 59.1 70.6

90,438 / 156,632 MusicGenre 50 46 47.9
SongTitle 37.6 79.6 46.1
ArtistName 73.8 27.3 36.2

181,050 / 808,180 Average 65.4 39.6 41

Table 2. Precision, recall and F1 score of StanfordNER. Training and
testing used k-fold cross validation with dictionaries (gazette lists).

should work with a large number of apps. (iv) Efficiency: Process-
ing, memory, and network overhead on mobile devices should be
minimal.

A possible solution for locally extracting in-app content seman-
tics is to require the developer to annotate their apps (more pre-
cisely, UI elements) with semantics. However, this compromises
the minimal developer effort goal.

Another option is to locally run named entity recognition algo-
rithms [39, 22, 34]. These algorithms identify mentions of named
entities, say a hotel name, in given input text, typically a web docu-
ment. They fall under two general categories: techniques which
require a knowledge base at runtime (supervised [7, 21], semi-
supervised [31, 3, 25], and unsupervised [11, 19, 41]), and tech-
niques which do not require a knowledge base at runtime, such
as NLP rule-based techniques [36]. As required knowledge bases
(e.g., dictionaries of known entities) are typically very large, tech-
niques of the first type are not suitable to run on a mobile device.

Rule-based techniques, on the other hand, can be efficiently run
on a device. We tested the well-known Stanford CoreNLP Named
Entity Recognizer (StanfordNER) [36]. This tool requires super-
vised training. Using Monkey [18, 23], a UI automation tool for
crawling mobile apps, we collected text from 14 WP apps in the
dining, food and music categories. We trained the tool to recognize
entity types relevant to such apps, using dataset sizes comparable
to those used in other NER use cases [38]. For improved accuracy
(as described in [37]), during training, we additionally provided the
tool with dictionaries consisting of 855877, 267057, and 35396 en-
tities in the music, restaurant, and recipe categories, respectively.
Table 2 reports precision, recall, and F1 scores for each entity type,
obtained using k-fold cross validation (k = number of apps).

The performance is poor with an average F1 score of 41%. NER
recognizes few entities (40% recall) with an average precision of
65%. Out of nine entity types, only addresses and cocktails have
F1 scores higher than 60%1, but this is still insufficient. In the web,
entity extraction algorithms usually target at least 80% precision
and recall [41, 28].

In summary, none of the above client-based techniques, in-
cluding state-of-the-art web extraction techniques such as Stan-
fordNER, achieve all our goals. Instead, we propose a 2-phase,
template-based approach.

3. OVERVIEW OF OUR SOLUTION
We balance the trade-off of on-device and zero developer effort us-
ing a hybrid device-cloud approach (see the overall architecture in
1These two entities are better recognized for different reasons. Addresses
always appear in a standard format (number, street name, city) which NER
learns to recognize. Cocktails are more easily recognized because our cock-
tail apps contain only cocktail entities and no closely-related entities, thus
reducing ambiguity.
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Figure 2. CDFs of (a) the number of words per UI element, (b) the number of page classes per app, and (c) the word-image ratio per page
class. Results based on top 25 (a and c) and top 14k (b) Android apps.

Figure 3): apps are annotated with semantics that remain valid at
runtime in an offline and user-agnostic phase, and these annota-
tions are used on-device to efficiently and continuously extract app
semantics, at runtime. We show that this design is feasible through
some key observations on how modern apps display content.
App UI structure. Mobile apps display content organized as a set
of pages that a user can interact with and navigate between. An
app has a small number of page classes, which can be instantiated
as many page instances (or pages, in short) with different contents
(e.g., the details for Nara and Izumi restaurants are shown in two in-
stances of the same page class). A page displays content according
to the UI layout defined in its class. An app page contains UI el-
ements (buttons, textboxes, lists), which are organized in a UI tree
(like a DOM tree), where nodes are UI elements and a child ele-
ment is contained within its parent element. Some UI elements are
interactable and have event handlers. With the above terminology,
we observe the following.
Singleton entities. In an app, many UI elements contain single
entities, e.g., the title TextBlock contains one type of information,
say the restaurant name. Developers tend to put various types of
information (restaurant name, address, and phone number) in dis-
tinct UI elements so that they can be independently customized. To
confirm this observation we study 25 Android apps in the top cat-
egories (news, weather, shopping, etc.). Using Monkey, we crawl
the contents of all textual UI elements in the apps for several Mon-
key interactions. We then compute the CDF of the average number
of words per each unique UI element across all page classes of all
apps (Figure 2(a)). 70% of UI elements contain 6 or fewer words,
and 50% have 3 or fewer.2 The highest average word counts are
with news apps (Flipboard has 17 and CNN has 10) and the lowest
with video and shopping apps (YouTubeKids, Vine, Ebay have 3
or less). We repeat the test with 17 Windows Phone (WP) apps in
the food, dining and music categories, and observe an average of
2.4 words per UI element. Overall, such small word counts suggest
that a single entity per UI element is relatively common, so precise
semantics can be associated to each UI element.
Few, stable UI structures. App pages are usually instantiated from
a few page classes. Figure 2(b) shows the CDF of the number of
page classes of 14k top Android apps in all categories. 60% of
the apps include 13 or fewer page classes, and 80% of the apps
include less than 26. A long tail of apps has more page classes (the
maximum was 638). The average number of page classes for the
17 WP apps is 8.6. Although exceptions exist, for most apps the
number of page classes is tractable. This makes it possible to cover
all UI elements in an app by annotating UI elements in that small
number of classes. Moreover, the annotations remain stable over

2The CDF covers 97% of the UI elements: the remaining 3% contains more
than 40 words, and the maximum is 967.

type: “restaurant_name”
name: “Nara”
related_entities: {<cuisine,”Japanese”>,…}
actions: {<pos_action, “view-map”>}
time_spent: 108 sec
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Figure 3. Offline-online hybrid architecture.

time: a UI element annotated as restaurant name can be instantiated
with any number of entities, all of which will be restaurant name.
This implies that UI elements can be annotated once offline and be
repeatedly used later at runtime.
Offline-online hybrid architecture. The above observations lead
to the two-stage architecture shown in Figure 3. Given an app, of-
fline (in the cloud) and without any user involvement, we execute
the app with a Monkey [18, 23], a UI automation tool that can au-
tomatically crawl pages of an app. The Monkey launches the app,
interacts with its UI elements (by tapping on buttons, filling out text
boxes, swiping pages), and navigates to various pages. The Mon-
key is configured to visit all pages of a given app, and to log UI
structure (UI tree) and contents of all visited pages. An app is ex-
ecuted several times. This raw data is then processed using several
entity extraction techniques (§4) to produce an entity template for
each page class in the app. An entity template is essentially a UI
tree annotated with semantics.

At runtime, the system captures app data (as described in §5.3).
This data has a similar format as that generated by Monkey of-
fline, but here the captured content is user-generated, and possibly
privacy-sensitive. The system immediately labels the raw data with
entity types and groupings using entity templates. For example, it
recognizes a restaurant name, address and phone number, and com-
bines them into one object which is stored in the Entity Store.

This design achieves better privacy in two ways. First, entity
templates reduce the online step to a simple matching operation
which can be executed on the client, so no data exposure occurs un-
less entity linking is needed. Second, entity templates can reduce
the data exposure even for services requiring entity linking. In fact,
they provide a systematic way to control which data can leave the
device. In a complete system, users may configure permissions reg-
ulating which types of data (entities) can be shared, and the system
using entity templates may omit data of private entity types.



P [ 0 ] . G [ 0 ] . B [ 0 ] . T [ 0 ] , unknown
P [ 0 ] . G [ 0 ] . L [ 0 ] . C[∗ ] , ( r e s t a u r a n t , a d d r e s s )
P [ 0 ] . G [ 0 ] . T [ 0 ] , unknown
P [ 0 ] . G [ 0 ] . B [ 0 ] . T [ 0 ] , unknown
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
P [ 0 ] . G [ 0 ] . L [ 0 ] . C [ ∗ ] . T [ 0 ] , group 1
P [ 0 ] . G [ 0 ] . L [ 0 ] . C [ ∗ ] . T [ 1 ] , group 1

Figure 4. Entity template for the UI tree in Figure 5. The format is
{node type, entity type} in the first section, and {node type, group
identifier} in the second section.

4. AUTOMATICALLY GENERATING EN-
TITY TEMPLATES

The above design simplifies the online step of semantics extraction,
but the offline/cloud stage is nontrivial. Prior work, also adopting
a hybrid architecture, employed crowd-sourcing to generate task
templates [10]. We advance the state-of-the-art by proposing a
framework for automatically generating entity templates, with no
human involvement. By being automated, it can scale to large num-
bers of apps.

The entity template of an app is a collection of templates, one
per page class. Each template contains two components: (1) map-
ping between a UI tree node (a UI element) to the entity type of
the node’s content, and (2) relationship between different UI tree
nodes. A template is all-inclusive: a UI tree node for which there
is no mapping in the template is assumed to have “unknown” entity
type, while the one without relationship information is assumed to
be unrelated to all other nodes. Figure 4 shows an example of entity
template.

We generate entity templates using a corpus of Monkey-
collected app page contents. This corpus is partitioned based on
the {app name, page class name} tuple to produce one template
for each partition. In the following, we assume one such partition,
and describe how we analyze all pages in the partition. As an app
page is represented as a UI tree, we use the terms page and UI tree
interchangeably.

We use two techniques: (1) using a knowledge base to recognize
entity types in UI trees (§4.1), and (2) analyzing UI tree structure
to further increase accuracy of entity types and entity relationships
(§4.2).

4.1 Extracting Entity Types from Corpus
To generate templates, we need to associate an entity type to the
text contained in each leaf node of a page UI tree. We do so by
leveraging existing entity extraction techniques. However, note that
rather than applying them to the target data (i.e., user data captured
at runtime), we apply them to our Monkey-generated corpus. We
decide to adopt approaches based on a knowledge base (KB) be-
cause compared to NLP rule-based techniques they do not require
training data, and, as our evaluation shows (Figure 8 in §6.1), they
can provide higher accuracy. Based on the app category, the KB
contains names of known entities that are relevant to that category
(e.g., song titles and artist names for the music category).
Features for entity type classification. We assign entities to UI
tree nodes using a diverse set of clues, called features, capturing
various properties of the input text. We use the following three
features (common also for web documents).
1. Boolean match: If the input text matches the name of a KB entry,
then the text is with high probability of the same type as that of the
matching KB entry. This approach captures exact matches. How-
ever, to deal with shortened words (Cafe vs. Cafeteria) or missing

words (“Bellevue Cantina” vs. “Cantina”), we say that two entries
match if they have 90% words in common and are in the same rel-
ative order.
2. Tf-idf similarity: Some entity domains can be potentially infi-
nite. For example, a recipe can have a creative name, consisting of
a combination of key ingredients, which may not appear in the KB
of known recipes. We call such domains high-ambiguity. For these,
exact matches can be rare, particularly when KBs are incomplete
and limited in size. Instead, we use a similarity metric that captures
the tf-idf based cosine similarity [39, 27]. At a high level, the tf-
idf value of an input text increases proportionally to the number of
times the words composing it appear in the KB (term frequency),
but is offset by the frequency of the words in the KB (inverse docu-
ment frequency), which helps control the fact that some words are
generally more common than others. For each input text we con-
struct the normalized tf-idf vector, and then compute the dot prod-
uct of this vector with the tf-idf vector of each KB entry (cosine
similarity). The value of this feature is between 0 and 1, and the
more the number of words shared by the input and the KB entry,
the higher the value.
3. Text length: This Boolean feature says whether the number of
words in the input text is consistent with typical length distribu-
tion of entities of the same type, provided by the KB. For instance,
restaurant names are usually shorter than addresses, and addresses
are usually less than 20 words.
The classifier. We use the following algorithm to compute the
weight wx,e, 0 ≤ wx,e ≤ 1, defined as the likelihood of a given
text x being an entity of type e. First, we use the length feature:
if x has fewer (or more) words than the lower (or upper) bound of
known entities of type e, we produce wx,e = 0. For example, in
our KB of addresses, entities have a maximum length of 13 words.
If an input text consists of 50 words (e.g., a restaurant review) it is
unlikely to be an address. Next, for low-ambiguity entities, such
as restaurant names and song titles, we consider the exact match
feature. If x matches with an entity in the KB which has type e, we
produce wx,e = 1, otherwise 0. For high-ambiguity entities, such
as recipe names, we produce wx,e as the tf-idf similarity score of x
and the KB for entity type e.

We repeat the above steps for all possible entity types for the
given app (based on its category). Finally, we compute the like-
lihood of x not being any of the entities under consideration as
wx,φ = k ∗

∏
e(1 − wx,e).

3 Intuitively, wx,φ is close to zero if
x is classified as at least one known entity type with high likeli-
hood values, and close to 1 only if it cannot be classified as any
entity with high likelihood. Finally, we normalize the weights to
probabilities as px,e = wx,e/(wx,φ +

∑
wx,e).

Given a UI tree leaf node n, the above process annotates
it with its uncertain entity type, defined as the vector En =
{p1, p2, . . . , pk}, where the entity type of n is i with probability
pi. Without losing generality, we assume that the vector’s first en-
try represents “unknown”, and hence the vector {1, 0, . . . } means
that the input text is of type “unknown”. A node’s entity type is
unknown if it does not contain any text or if no entity is recognized
based on the KB.
Augmenting the KB-only algorithm. With the algorithm de-
scribed so far, for each leaf node in the UI tree, the entity type
with the largest probability can be deemed the node’s deterministic
entity type. As our evaluation shows (§6.1), this approach, which
we call KB-only, may fail to recognize entities or lack confidence
3We define k = n/(n+ c), where n is the number of possible entities for
a given text, and we set c=2 by default, but in general c can be adjusted to
control the aggressiveness of the entity assignment.



in its output (small p values in E), especially when the KB is much
smaller than the universe of that entity type. In the web, to aug-
ment KB-based techniques, “context” (text surrounding input text)
is typically used to disambiguate entities. For example, in the left-
most screen in Figure 1, is “San Fernando” a restaurant or a Saint
name? If the name “San Fernando” appears with mentions of other
restaurant or food entities (as in the rightmost screen), it may be
classified correctly.

Pages in mobile apps typically contain far less text than web doc-
uments due to smaller screen sizes, so context is generally poor.
Additionally, a common mobile UI design practice is to display im-
ages rather than text to organize lots of information (including con-
textual data like “menu” and “food” that could help disambiguate
entities). Using the 25 top Android apps introduced earlier (§3),
we estimated how much content in a typical app is textual versus
images. For each app page, we computed the ratio between the
area of the screen that is covered by words and by images. A small
ratio means that the content is image dominated. As the CDF in
Figure 2(c) shows, in 92% of the apps the ratio is below 4, and
in 52% the ratio is 1 or less. Apps like Pinterest are completely
image-dominated (ratio is 0.06).

To compensate for the lack of context, we propose UI tree struc-
tural analysis, designed to improve the accuracy of entity classifi-
cation for app pages with little text (first and second screen from
the left in Figure 1). For unstructured pages with lots of text (third
screen) web entity extraction techniques using context-derived fea-
tures may be applied [41].

4.2 Structural Analysis of UI Trees
The previous KB-only algorithm produces many UI trees, one for
each page in the corpus, with each leaf node annotated with its un-
certain entity type. The goal of structural analysis is twofold: (1) to
improve accuracy of entity types, and (2) to discover relationships
among entities.

Given a node n in a UI tree U , we define its node type Tn to be
a sequence of UI element names plus their indices from the root of
the UI tree to n. For example, in Figure 5, the first leaf node on
the left has type P[0].G[0].B[0].T[0]. We also define the node type-
entity tuple of n as the tuple (Tn, En), where En is the uncertain
entity type of n. We say that Tn ∈ U and (Tn, En) ∈ U if U con-
tains a leaf node with type Tn and node type-entity tuple (Tn, En),
respectively.

4.2.1 Exploiting Cross-Page Similarity

Our first optimization is based on the observation that app pages
instantiated from the same page class have similar UI structures
and content types. For example, in OpenTable, the page displaying
restaurant details has the name of the restaurant in a TextBlock at the
top of the page. If a page is considered in isolation, the KB-only
entity recognition algorithm described above may fail to recognize
the name of the restaurant due to, e.g., an incomplete KB. However,
knowing that the top TextBlock contains a restaurant name in many
other instances of the same page class is a strong indicator that the
name at the top of this page is a restaurant.

Given a set of UI trees U1, U2, . . . , Uk, we consider all their
node type-entity tuples. For each unique node type T , we compute
E as the average of all uncertain entity vectors of T in all input UI
trees. We assign E to all nodes of node type T as their common
uncertain entity types. We represent the set S of all tuples (T,E)
as a merged UI tree that has a leaf node of node type T if and only
if T appears in S. Intuitively, we combine entity knowledge across
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Figure 5. UI tree showing containment relationships of an app
page’s UI elements. Each node label indicates the UI element type
(P=page, G=grid, B=button, L=list, T=text block, C=custom type).
Node indexes are not shown. Labels below the leaf nodes indicate
true entity types (Rest=restaurant name, Addr=address) and group
ids.

similar pages to improve accuracy and robustness of recognition
in pages where it would otherwise fail due to insufficient in-page
contents or incomplete KBs.
Example. Consider a UI tree leaf node of node type T with contents
“Burger King”, “Kabab Palace”, “The American” and “Via Tri-
bunali”. The KB-based algorithm produces their uncertain entity
vectors as (unknown,cuisine,restaurant) = (0,0,1), (0,0.05,0.95),
(0,0.5,0.5), (1,0,0), respectively. (The low probability for “The
American” is due the name’s similarity with the cuisine type; while
that for “Via Tribunali” is due to its absence in the KB.) Then,
we assign to all nodes the average of their uncertain entity vec-
tors (0.25,0.14,0.61). This enables classifying “The American” and
“Via Tribunali” as restaurant names with good confidence (0.61).

4.2.2 Exploiting In-Page Patterns

Our second optimization exploits the observation that semantically
similar items in the same app page exhibit consistency in presen-
tation style. Hence, the entity type of one item can be a good hint
for that of another item with similar presentation. Consider a List,
which is one of the most commonly used app UI structures to enu-
merate homogeneous items. Suppose the list contains three occur-
rences of {restaurant name, address} (Figure 5), and our entity
recognition algorithm recognizes two of the names as restaurant
names with high probabilities; the algorithm fails to recognize the
remaining name due to, say, an incomplete KB. However, the fact
that the entity pattern {restaurant name, address} repeats within
the list suggests that also the other item is a restaurant name.

The example above is rather simplistic. In practice, apps have
fairly large and complex UI structures. There are many types
of UI elements used for enumerating or displaying collections of
items (List, Grid, Hub, FlipView, etc.), and developers can define
custom ones. Each item of these collection-like UI elements can
contain arbitrary objects, possibly a nested collection-like UI ele-
ment which recursively contains other collection-like UI elements,
resulting in a deep UI tree. Moreover, leaf nodes generally con-
tain heterogeneous entity types. Thus, repeating patterns of enti-
ties can be long (e.g., <restaurant name, address, phone number,
price range, ... >), and simple rule-based techniques may not dis-
cover them. The problem is further complicated by the fact that
entity types of UI tree leaf nodes are uncertain: discovering repeat-
ing patterns in an uncertain sequence is more challenging than in a
deterministic sequence.



We introduce some definitions. An entity pattern is a sequence
of deterministic entity types. An entity sequence of a UI (sub)tree
with root n, denoted as EntitySequence(n), is the sequence of
uncertain entity types of all its leaf nodes, sorted by their node
types.
Def 1. Matching Probability: The matching probability
MatchPr(α, S) of a pattern α and an uncertain sequence S is∏
i Pr(S[i] = α[i]) if |α| = |S|, and 0 otherwise.

Def 2. Expected Frequency: The expected consecutive, non-
overlapping frequency of pattern α in uncertain sequence S, de-
noted as ExFreq(α, S), is as follows. Let S = S1 ◦ S2 ◦ . . . Sk,
where ◦ denotes sequence concatenation, and ∀i, |Si| = |α|.
Then, ExFreq(α, S) =

∑k
i=0MatchPr(α, Si). Normalized ex-

pected frequency of α in S, denoted as NormExFreq(α, S) is
ExFreq(α, S)/n, where n = |S|/|α|.
Def 3. Maximal Repeating Pattern: Consider a UI (sub)tree
rooted at node n. Let Si be the entity sequence of the subtree
rooted at its i’th child. A pattern α maximally repeats in a UI
(sub)tree rooted at node n if (1) ∃i,MatchPr(α, Si) ≥ θ, and
(2) NormExFreq(α, S1 ◦ S2 ◦ . . . ) is maximum among all α
satisfying (1).

Given a (merged) UI tree, produced as described above, we want
to identify the maximal repeating entity patterns in various subtrees
of the UI tree. The patterns will be used to refine uncertain entity
types of all leaf nodes of the UI tree.

We introduce Algorithm 1. It recursively traverses a UI tree top-
down, and discovers the patterns bottom-up. It uses the following
ideas.

Algorithm 1 MaximalRepeatingPattern(n)
Require: A node n in a UI tree, with leafs annotated with node type-entity

tuples
Ensure: The pattern property of each nonleaf node has the entity pat-

tern discovered for its descendant subtree
1: n.pattern← φ
2: if (n is not leaf) then
3: for all c ∈ n.children do
4: MaximalRepeatingPattern(c)
5: end for
6: P ∗ ← set of patterns appearing in children of n
7: P ∗ ← P ∗ ∪ {α|∃ c ∈ n.children,MatchPr(α, c) ≥ θ1}
8: if P ∗ is nonempty then
9: S← EntitySequence(n)

10: pattern← argmaxα∈P∗ NormExFreq(α, S)
11: if (NormExFreq(α, S) ≥ θ2) then
12: n.pattern← pattern
13: for all c ∈ n.children do
14: c.pattern← φ
15: end for
16: end if
17: end if
18: end if

(1) Pattern windows: We define a pattern window to be the por-
tion of S within which the pattern is likely to repeat. In Figure 5,
a window consists of the six T nodes that have entity type labels
below them. Algorithm 1 searches repeated patterns in the entire
subtree rooted at a nonleaf node. This is based on the observation
that UI elements in a repeated sequence of patterns are contained in
a collection-like structure of homogeneous objects. In Figure 5, the
elements are contained within a list (type L) of a custom, developer-
defined type C. Due to this uniform structure, the sequence of re-
peated patterns cover all nodes under a common nonleaf node. A
page may contain multiple (non-overlapping) windows, in which
case Algorithm 1 will correctly label the corresponding nonleaf
nodes with their patterns.

(2) Determining candidate patterns: For each window, Algo-
rithm 1 generates a list of candidate patterns that might be maxi-
mally repeating in the window (Lines 6, 7). Theoretically, a pattern
can be any substring of the window. However, some patterns are
unlikely due to the UI structure. For example, in Figure 5, any pat-
tern of length 3 is unlikely because that would make the C nodes
heterogeneous. Therefore, we prune patterns that partially overlap
with multiple subtrees. For efficiency reasons, while traversing the
tree bottom-up, we only consider patterns that are larger than pre-
viously tested patterns (larger patterns subsume smaller ones), and
that are smaller than a max pattern size (maxP ).
(3) Maximal repeating pattern: As we traverse the tree bottom-
up, we evaluate windows of increasing size (window is given by all
leaf nodes of the current nonleaf node). For each window, we find
the maximal repeating pattern (Lines 3–5). If the normalized ex-
pected frequency of the pattern is above a threshold (φ), we accept
it as the pattern for the window. The accepted pattern subsumes
subtree patterns.
Example. Consider the portion of the UI tree of a dining app in
Figure 5. We can assign 4 possible entity types: cuisine, restau-
rant, address, and unknown. When traversing the tree bottom-up, at
node C the MaximalRepeatingPattern algorithm considers patterns
of size 2 (patterns of size 1 have been tested at node T, and patterns
of size 3 are excluded because they would make the tree heteroge-
neous). Assuming the first two leaf nodes T in the window have un-
certain entity vectors (unknown,cuisine,restaurant,address) which
are (0.4,0,0.6,0) and (0.45,0.05,0,0.5), respectively, for a pattern of
size 2 the algorithm computes the matching probability of all pos-
sible uncertain sequences, including restaurant-cuisine, restaurant-
address, restaurant-unknown, etc. (i.e., 0.03,0.3,0.27). restaurant-
cuisine has matching probability smaller than θ1, so it is dropped;
restaurant-cuisine and restaurant-unknown have similar probabili-
ties. Once all nodes are processed, a maximal recurring pattern
can be found. If so, it helps disambiguate between uncertain entity
types with similar probabilities (such as address (0.5) and unknown
(0.45) of the second leaf node were in this example).

4.3 Generating Templates
Each template is an annotated UI tree, with each node type mapped
to an entity type. The output of the previous algorithm is a UI
tree containing leaves annotated with node type-entity tuples, and
nonleaf nodes annotated with patterns. To generate templates, we
traverse the UI tree top-down. If at any node, we find a pattern,
then we assign that pattern to all leaves of the node in question.
For example, assuming that in Figure 5 the algorithm is currently
processing node L, and assuming that MaximalRepeatingPattern
algorithm annotated node L with the pattern restaurant-address,
then all leaves of L will be assigned that pattern, as shown in the
figure. If there is no pattern, we assign the entity type with the
maximum probability (based on the uncertain entity vector) to the
leaf node.

4.4 Identifying Relationships
Entities in a page can be related. For instance, in a music app the
page showing a song’s details will probably show the song’s title,
artist, and album. Entity templates also encode entity relationships.
As shown in the second section of the template in Figure 4, the two
node types are related, since both of them have the same group
identifier 1.

To identify entity relationships, we observe that related entities
in a page exhibit spatial locality in the UI tree. Therefore, we clus-
ter node types according to their pairwise geodesic distance (i.e.,



the number of edges in a shortest path connecting them) in the UI
tree, such that related items are in the same cluster. Our clustering
algorithm uses two insights. First, a cluster contains only one node
type of each entity type. For example, a cluster may contain one
node type with a song’s title and one node type with an artist name,
but not two node types with song titles. Second, the relationship
between node types is symmetric. For example, if a song’s title T
is related to an artist name A, then A is also related to T .

Given a UI tree U , we first create an undirected graph G with all
leaf nodes in U . Initially, this graph has no edges. We add an edge
between nodes n1 and n2 if the aforementioned constraints are sat-
isfied: i) their entity types are different, and ii) n1 is n2’s nearest
neighbor of entity type n1.entityType and vice versa. For exam-
ple, if the entity type of n1 is RestaurantName, and if the type of
n2 is Address, then an edge is added between these two nodes only
if n1 is the closest RestaurantName among all restaurant names to
n2, and n2 is the closest Address among all addresses to n1. Once
we have constructed G, we label each connected component of G
as one cluster by giving each leaf node the same group identifier.
In graph theory, a connected component is a subgraph in which
all vertices are connected to each other. This property ensures the
symmetricity condition discussed above.

5. APPSTRACT SYSTEM AND USE CASES
Appstract is our implementation of the hybrid system design de-
scribed in §3, currently running on Windows Phone (WP) and An-
droid. The ability of extracting app content semantics enables two
classes of capabilities, broadly classified into context-driven and
user-history capabilities. An example of the former is the system
firing notifications upon specific user actions, say booking of a ho-
tel, to allow map and calendar apps to self update. An example
of the latter is the system recording types, values, and metadata
of contents the user repeatedly consumes (e.g., songs by certain
artists) to suggest news or concerts. We describe the Appstract
APIs that support such capabilities, and the 8 use cases we built.

5.1 Appstract Abstractions and API
Appstract provides three data abstractions: entities, actions, and
entity groups. Entities capture “what” content a user con-
sumes. The entity object includes a type and a name (e.g.,
<restaurant_name,“Nara”>). Actions such as tap events on but-
tons with labels such as “Like”, “View-menu” capture “how” users
interacted with the entities. From a system point of view, actions
are special types of entities with type=action (e.g., <action,“Book-
table”>). Entities and actions are extracted through template
matching. An entity group consists of one main entity, several re-
lated entities and actions (aggregated using entity group IDs), and
various metadata:

EntityGroup:<id,timestamp,type,name,related_entities,
related_actions,num_taps,time_spent,UIinfo>

UIinfo:<app_name,app_page,isTapped,ui_coord,ui_trace>

Actions and metadata can be used as indicators of interest, sim-
ilar to those used for web pages [44, 42]. For instance, clicks on
a “Like” button or on a “Call number” launcher indicate user in-
terest in the corresponding entity. Time spent and frequency of tap
events on the page containing the entity can also be mined to in-
fer user interest. UIinfo contains information about where the entity
was captured (app, page class, UI element coordinates), whether it

getCurrentView()→ view get content on screen
getEntities(view)→ [entity]
getActions(view)→ [action]
getName(entity|action)→ name e.g,. “Coldplay”
getType(entity|action)→ type e.g.., “artist_name”
getGroupId(entity|action)→ groupId used to group entities
subscribeToView(listener,filter) filter is optional
unsubscribeFromView(listener)
queryEntityGroup(query)→ cursor SQL-like query

Table 3. Summary of Appstract API.

was clicked, and the sequence of UI events that led to the page con-
taining it (ui_trace). This trace can be used to automatically replay
user interactions, as in the App-tasker use case (§5.2).

Appstract offers two types of API (Table 3): 1) Online, OS and
apps can request the content currently displayed on screen or can
request to be notified when specific user actions or types of entities
occur. Through this API, it is possible to obtain a kind of snapshot
(called View) into the user’s current activity. 2) EntityGroups are
stored in the Appstract Entity Store that exposes an SQL-like in-
terface. The Entity Store is currently a local database, but it could
also be designed as a distributed store where old EntityGroups are
offloaded to a store in the cloud and EntityGroups stored on other
devices of the same users are synchronized. The following is an
example of a query to find out about user cuisine preferences (used
in the “Recipes By Restaurants” app, §5.2). It returns cuisine types
of entities (i.e., restaurants) that the user added to their Favorites,
ordered by occurrence.

SELECT Appstract.METADATA.CUISINE, COUNT(ENTRY_ID) AS TOT
FROM Appstract WHERE Appstract.ACTION LIKE ‘AddToFav’
GROUP BY CUISINE
ORDER BY TOT;

5.2 Implemented Use Cases
We implemented eight use cases which we describe in the follow-
ing. The consumer of app semantics can be the OS (1-4), a first
party app (5-6), or a third party app (7-8).
1. Context Notifications (Android): A reserved restaurant’s name
(detected by “Book-table” actions) is an example of “relevant” en-
tity. The OS subscribes to the current View with filters on the inter-
ested events and/or entities, and fires timely notifications for other
apps to consume (see Fig. 6(a)). Google Maps caches the restaurant
address, and offers navigation at a later point.
2. Contextual Menu (WP): This is a library that provides context-
sensitive pop-up menus in an app with zero developer effort. When
a user selects a song name or a restaurant name, the library pops up
a menu with options to purchase the song or to call the restaurant,
respectively. Appstract notifies the menu service when a UI ele-
ment is tapped and provides the type of the entity contained, such
that the right menu for such content can be displayed. Fig. 6(b)
shows a menu built using the SaveContactTask API provided by
the WP API. We built these menus by instrumenting app binaries,
but the OS would ideally generate them.
3. RankedList and 7. MusicNewsReader (Android): RankedList
is a UI Element that allows app developers to quickly build person-
alization into their apps. From the developer perspective it is as
simple as creating a List UI Element (no SQL queries, no rank-
ing logic). From a functionality point of view, it is powerful be-
cause it enables ranking of objects using semantics information
extracted from multiple apps of different categories. MusicNews-
Reader uses this API for ranking music news based on a user’s
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Figure 6. Some of the apps implemented using Appstract.

“favorite” music artist, defined as “most frequently-viewed artist”
(ranklist.orderBy(TYPE_MUSIC_SONG,TYPE_MOST_FREQUENT)).

4. App-tasker (Android): Imagine a user asking to “Play Music.”
App-tasker queries the Entity Store for the ui_trace associated with
TYPE_SONG objects, and infers: 1) an app for the task, 2) the se-
quence of UI events for the task. Using such a task template, the
service can guide the user or complete the task automatically. To
replay UI events, we extended the Android Accessibility Service.

5. Cortana-AppsForYou (WP): We extended Cortana to recom-
mend apps based on music interests. For example, the user has re-
peatedly selected the Toddler station in Pandora, so Cortana queries
the Entity Store for recently-listened music and infers her interest
in kids-related apps (Fig. 6(c)).

6. Dinner Memex (Android): Mashup of info (recipes, music,
etc.) collected from various apps about a dinner plan. The de-
veloper specifies a mashup object (with entity types), and this is
automatically populated with matching entities.

8. Recipes-by-Restaurant (WP): We modified the Food & Drink
recipe app (by adding 6 lines of dalvik bytecode) to rank recipes
based on preferred restaurant cuisine types inferred from the Yelp
app (we used the SQL query in §5.1).

5.3 Implementation
We implemented Appstract for Android 5.0 and Windows Phone
(WP) 8.0, and tested it with apps in the food, dining and mu-
sic categories. Appstract’s cloud-side uses Monkey from the Va-
narSena [29] (WP) and PUMA [18] (Android) systems to crawl
app contents. Entity template generation code is the same for WP
and Android apps. For entity extraction, we used dictionaries for
9 entity types (Table 4) that were found in the app categories we
selected.

Android. We implemented Appstract as a type of accessibil-
ity service. Appstract registers for the TYPE_VIEW_SELECTED,
TYPE_VIEW_CLICKED and TYPE_WINDOW_CONTENT_CHANGE event
types to capture app contents and user actions. The entity store is a
SQLite database.

WP. WP does not provide an extensible accessibility service like
Android. Therefore, to limit overhead to only apps that use App-
stract, we used AppInsight binary instrumentation [30]. We over-
came two challenges while implementing on WP—(1) We can only
extract text when the page is stable. Therefore, we tracked all asyn-
chronous page additions using ProcessingComplete events of Ap-
pInsight; (2) Text extraction occurs on the UI thread and can slow
down the entire user experience. We tested several optimizations
until we achieved acceptable performance (§6.2).

Dictionaries
Apps Entity types # Entities Source
Pandora, Spotify, music genre, song title, 1,636,582 XBoxMusic
FreeMP3Music artist name
TripAdvisor, OpenTable, address, cuisine, 267,051 Yelp
Yelp, Urbanspoon restaurant name
FoodSpotting address, recipe name, 301,594 Yelp,

restaurant name BigOvenAPI
AllRecipes, Epicurious, recipe name, cocktail, 35,396 Wikipedia,
111Cocktails, BigOven dish type BigOvenAPI
Allthecooks, PizzaPointer,
BettyCrockerCookBook,
CocktailGenie
YumvY cuisine, recipe name, 35,442 BigOvenAPI

dish type

Table 4. Apps, entities and dictionaries used in the evaluation.

6. EXPERIMENTAL EVALUATION
We have already discussed the privacy benefits of our approach in
§2. Here we focus on evaluating the accuracy of automatic template
generation (which ultimately makes our approach scalable), and the
client-side performance and overhead. We use apps in the food,
dining and music categories. We expect similar observations to
hold for categories such as movies, books, hotels, etc.

6.1 Automated Entity Template Generation
To evaluate template generation, we created a dataset of 104 WP
apps based on popularity from the top 200 apps in the food, dining,
and music categories. We expect similar results for Android apps
because UI structures tend to be similar.
Generation speed. We run each app using Monkey for a maximum
of 20 minutes, and then feed the Monkey logs into entity extraction.
For each test app, we extract entities of types listed in Table 4 based
on the app category in the store.4 Generating entity templates takes
on average 10.3 seconds per app. This low execution time allows
us to scale template generation to all apps in the store, and to even
refresh templates on a daily-basis (e.g., due to app updates).
Template accuracy: entity types. We consider two algorithms.
Our baseline, KB-only, uses the knowledge base (similarity and
word length features as described in §4.1). Appstract is KB-only
plus the optimizations based on structural analysis of UI trees
(§4.2). We use a random subset of 17 WP apps (Table 4) out of
the 104 apps above. We run each app using Monkey and gener-
ate templates. We compare the entities extracted by the two dif-
ferent algorithms with ground truth templates, compiled manually
by observing the content of hundreds of UI elements from several
Monkey runs. (Hence limiting the apps tested to 17).

For both algorithms, we measure (1) precision: the fraction of
correctly labeled UI elements across all those labeled with the same
entity type, (2) recall: the fraction of correctly labeled UI elements
across all UI elements of the same true entity type (based on ground
truth), and (3) accuracy or F1 score: the harmonic mean of preci-
sion and recall, i.e., 2× precision×recall

precision+recall
.

Figure 7 reports the results for different entity types, aggregated
across all apps. The results show some key points. First, our
optimizations significantly improve the performance of entity ex-
traction in mobile apps. Appstract outperforms KB-only on every
single entity type. The average precision, recall, and F1 score of
KB-only are 60%, 60%, and 57% respectively, while those for App-
stract are 78%, 87%, and 81%. Appstract’s entity extraction per-
formance is comparable to the state-of-the-art for web documents
(e.g., [41]).
4Restaurant names, song titles, and artist names are treated as low-
ambiguity entities (exact match); the rest as high-ambiguity (tf-idf). Other
parameters introduced in §4 are θ1 = 0.01, θ2 = 0.3 and maxP = 8.
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Figure 7. Performance of KB-only and Appstract template generation algorithms across all 9 entities (17 apps).

Second, the performance of both algorithms varies across entity
types. Considering the F1 score, entity types with a relatively small
number of possible values, such as cuisine type, music genre, and
artist name perform relatively well. This is because many of the
entities can be recognized by directly consulting the KB. However,
entities with a large number of potential values (song title, address,
restaurant name, and recipe name) are more difficult to recognize,
especially if the KB is small.

Third, while Appstract provides better accuracy than KB-only
for both classes of entity types (with a small or large number of
values), Appstract’s benefit is more prominent for the second class.
Appstract has 37% better average accuracy than KB-only for cui-
sine type, music genre, and artist name, while it is 68% better for
song title, address, restaurant, and recipe name. This is because
Appstract has more opportunities to disambiguate entities of the
second class.

Finally, larger dictionaries can improve Appstract’s accuracy, as
in the case of music-related entities.

Overall, these results show how our approach provides reason-
ably accurate templates, and, because it is automated, how it can
scale to many types of apps with little effort.
Template accuracy: entity relationships. We evaluate whether
our clustering algorithm is accurate. For each of the 17 WP apps,
we manually identify entity groups and compute the number of
edges in each one. On average we observe 29.2 edges per app.
When the input UI tree is the ground truth template annotated only
with entity types, our algorithm achieves 100% precision (all out-
put edges are correct) and 91.5% recall (some edges are missed).
Most errors occur with FoodSpotting and Spotify, and are due to
entity type encoding. While we treat address and phone as the same
entity type, FoodSpotting treats them separately such that these en-
tities have separate edges to a restaurant entity. Similarly, while we
assume song and album name to be the same entity type, Spotify
does not. With the introduction of two additional entity types, the
recall is 95.7%.
Comparison with StanfordNER and KB-only. We now evalu-
ate the “final” accuracy of Appstract-generated templates to extract
entities from app pages, in the same way we evaluated Stanford-
NER in Table 2. Figure 8 compares Appstract to StanfordNER
(our baseline for web entity extraction), and to the KB-only algo-
rithm (§4.1).5 Appstract outperforms both, on all entity types. On
average, StanfordNER achieves an F1 score of 41%, while App-
stract’s F1 score is 79%. In many cases, Appstract’s F1 score is
more than double. A main reason for the performance improvement

5We use KB-only and Appstract-generated templates to extract entities
from a set of 14 apps with 4657 page instances (the same set used for Stan-
fordNER). Three apps are not used because not enough training data exists
for StanfordNER.
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is Appstract’s structural analysis of UI page structures that reduces
ambiguity in closely-related entity types. Although KB-only per-
forms better than StanfordNER, Appstract still outperforms it due
to structural analysis.

6.2 Client Performance and Overhead
We compare Appstract to a cloud approach in terms of network
bandwidth, latency, energy consumption, and storage.
Network bandwidth. Appstract uses the network only to down-
load app templates—roughly 400 kB (without compression) per
app. It does not require network communication at runtime. This
is a significant overhead reduction compared to cloud-based sys-
tems which consume bandwidth to upload app data for semantics
analysis. To get a rough estimate, we use Now on Tap. We pick
33 top Android apps, and measure the bandwidth consumed when
invoking Now on Tap on two unique pages (see Figure 9). Now on
Tap sends 6.8 kB on average to the cloud (the request packet size is
always larger than 3 kB, and up to 37.2 kB maximum).6

6The size of the response depends on the specific application, the cards of
Now on Tap in this case, so it is not comparable to the Appstract scenarios.
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Figure 10. Appstract notification delay.

Latency. To evaluate latency, we measure the Appstract delay be-
tween a UI event (e.g., click on a button) and the notification with
the extracted entity types firing. We run Appstract on a LG Nexus
4 running Android 5.0.7 We use Pandora (music) and Urbanspoon
(restaurants). We create from 10 to 100 subscriptions for the actions
“book-table” (Urbanspoon) and “thumb-up” (Pandora), and we use
monkeyrunner [4] to automatically generate 100 UI events of these
types, every 6 seconds. A 100 subscriptions for the same type of
event (i.e., 100 services interested in the same event) is a realistic
upper bound. Figure 10 reports the average notification delay. The
breakdown of the total delay includes: (1) acc-serv, the time the
accessibility service takes for processing the UI event and invok-
ing callbacks, (2) tree-tMatch, the time for parsing the captured UI
tree and matching the entity template, and (3) sub-proc, the time
for matching subscriptions and firing notifications. The overall de-
lay in Pandora increases linearly from 126 ms (10 subscriptions)
to 150 ms (100). The increase, due to sub-proc, is proportional to
the number of subscriptions. In Urbanspoon, the delay is roughly
2 times higher (242–350 ms) because the loaded Urbanspoon page
has about twice the UI elements of the Pandora page (191 vs. 88).
100–200 UI elements is the typical range of UI elements we have
observed, so given that users may generate at most one UI event
per second, Appstract processes UI events in a timely manner.

The latency of a cloud approach is much higher because of the
network transfer. Using the same 33 apps above, we measure the
RTT of Now on Tap over WiFi to be on average 1.7 seconds (SD =
2.4). We expect the cellular network RTT to be larger—Sommers
et al. show that cellular latency is often a factor of two greater than
WiFi latency [35]. However, a cloud-based approach provides a
super set of the Appstract functionality.
Energy and computation overhead. Appstract consumes energy
due to the local processing. We evaluate the processing over-
head using both our phone prototypes. For Android, we use the
CPU-intensive NEON MP MFLOPS benchmark [33], and mea-
sure its slowdown due to Appstract. We generate a workload of
UI events by interacting intensively with Urbanspoon for 3 min-
utes, and recording the UI events using RERAN [15]. Then, al-
ways using RERAN, we replay the UI events in three test configu-
rations. As Table 5 shows, when there are no subscriptions, App-
stract processes UI events, extracts entities/actions, and computes
entity groups with an overhead of only 1.7%. Overhead increases
as online subscriptions grow.

WP does not expose an accessibility service for tracking UI
events, so we use binary instrumentation to capture page contents.
The instrumentation affects the UI thread, so we measure the over-
head as the additional time, compared to an uninstrumented app, a
UI takes to stabilize since the user interaction that triggers the UI
change. We use the original and instrumented versions of Urbans-
poon and Pandora on a Lumia 820 running WP 8.0, for 10 minutes.
7On WP, due to the siloed nature of the apps, communications occur
through the cloud, so we cannot realistically measure this delay.

Case MFLOPS % Slowdown
Baseline 4655.3 ( 31.9) 0.0
Appstract 4576.0 (163.8) 1.7
Appstract+100sub 4435.0 (111.5) 4.7

Table 5. Appstract overhead on Android 5.0. Average, variance and
% slowdown of a CPU-intensive benchmark.

The average overhead, measured as the percentage slow down (in
loading or updating a page, depending on the UI event) is 1.8%.
The overhead increases with the complexity of the UI layout of the
app pages, with the worst-case overhead we observed being 3.5%.

To fully compare Appstract to a cloud-based approach in terms
of energy consumed, we ran the following experiment. We select
5 apps (Zomato, Pandora, TripAdvisor, MyBar, MSN Food and
Drink), and interact with them for 2 hours. Using the record-and-
replay HiroMacro [26] tool, we record a trace of the UI events trig-
gered during interaction including UI tree contents. We later replay
the UI event trace in two conditions: 1) Appstract, where our ser-
vice running in the background processes page UI trees at each new
UI event, and 2) Cloud-based, where a background service makes a
network request at each UI event to a cloud server which responds
with a packet containing the size of bytes received. To minimize
network usage, the service only sends the delta between two subse-
quent UI trees. This cloud-based approach does not exactly simu-
late Now-on-Tap since our cloud service does not do entity extrac-
tion, but we expect client’s energy consumption to be due mostly
to network activity so it gives a good estimate. In both conditions,
we use 3G with a Nexus 4 charged to 100%, and sample the battery
level at regular intervals. The Appstract condition ends with 75%
battery remaining, whereas, the cloud-based condition ends with
74% battery remaining. The cloud-based approach does not con-
sume significantly more energy than Appstract because packets are
transmitted while apps are running. Therefore, the radio is active
most of the time (i.e., no 3G tail effect), and any data transferred
due to semantics analysis can be piggy-backed onto ongoing app
transfers. Appstract’s energy consumption is comparable (or less)
because, as shown above, its processing overhead is negligible (and
Appstract does not use the network at runtime).
Storage overhead. Finally, while the cloud-based approach has no
storage overhead, Appstract stores extracted entities locally. To get
a rough estimate, we use data collected through the deployment of
the WP prototype to 11 users for 8 weeks, where we observed entity
groups of 1.5 kB (without compression). We consider two of our
WP users: one is a regular app consumer who produced an average
of 19.6 entities per week, per app; the other is an occasional user
who generated only 1.2 entities per week, per app. We estimate that
the monthly storage overhead for 10 Appstract-monitored apps is
1.2 MB and 72 kB, respectively. Projecting these numbers to 50–
100 apps over a year, the upper bound is 780 MB–1.6 GB. Data
compression can reduce the sizes, and further reduction is possi-
ble by periodically summarizing the data to inferred user interests
(e.g., user likes Chinese food), and discarding (at least locally) the
raw data. So we conclude that these storage requirements are rea-
sonable.

7. DISCUSSION AND LIMITATIONS
App scope. We have focused on food, dining and music app cat-
egories, however, Appstract is applicable to communication and
social network apps (people, organizations, places), travel apps
(flights, hotels), and shopping and entertainment apps (movies,
books, purchased items). Games, tools, productivity, and weather
apps are less interesting from an entity extraction point of view.



Free-form text-based apps, such as email and office apps, fall in the
category of unstructured content apps so they require deeper text
analysis (possible with existing web techniques through a cloud-
based approach).
Entities in images. Appstract offers a more privacy-respecting ap-
proach for extracting semantics of in-app structured text, but it does
not recognize entities in images. Image-based entity recognition
could be supported if a suitably trained model were available. Such
a trained model could be created in the cloud with user-agnostic
data in much the same way Appstract uses Monkey-generated data
to create templates, and then it could be sent to the device for se-
mantics extraction, ensuring that the images a user is viewing do
not leave the device. However, the challenge here is to obtain
a large enough labeled training dataset to achieve a well-trained
model. Furthermore, if images were organized in a UI tree (like a
grid view of photos, for example), Appstract’s techniques could be
used to boost accuracy by leveraging patterns in UI trees.
Incomplete app text crawling: Appstract’s automated process for
generating entity templates relies on a corpus of data collected us-
ing Monkey (or similar UI automation tools). Such tools do not
provide 100% coverage of an app’s pages so the accuracy of our
approach might be affected. Ravindranath et al. conducted a study
of Monkey coverage of unique page classes, and found that in a set
of 35 randomly selected apps Monkey has a page class coverage of
100% for 26 apps, with 90% of apps being explored fully under 365
seconds [29]. However, Appstract requires good coverage of page
instances as well. On the other hand, as long as Monkey achieves
good coverage of unique page classes, the Appstract in-page pat-
tern analysis can increase accuracy of entity extraction, especially
in cases where few instances of the same page class are available.
Privacy and access control. The trusted OS must regulate ac-
cess to semantic data extracted from the apps. An all-or-nothing
model, where an app has access either to the entire Entity Store
or to nothing, is unlikely to work. Extracted data carries infor-
mation of varying sensitivity, so finer-grained control is preferable.
An all-or-nothing model would also not be compatible with privacy
frameworks like Contextual Integrity [24, 8]. Ultimately, extracted
entities can be treated as system resources, and protected by the
same model current mobile OSes use to control access to resources
like sensors and network. Users could grant permissions to apps,
separately, per entity category. For instance, Pandora and Spotify
both produce entities of category SongTitle, and an app with per-
mission granted to access entities of category SongTitle might ac-
cess all such entities produced by any app on the device. While
permissions are essential, research shows that in mobile apps they
are not sufficient for protecting user data [14, 20]. Orthogonal tech-
niques are applicable here [13, 6].
Data ownership. Who owns app usage data? If a developer owns
all usage data in her app and if there is little incentive to share this
data with other apps, a developer might not want the OS to extract
it. On the other hand, if the user owns her data, she may want the
OS to use it for on-device services or even across apps for her own
benefit. While we can address some concerns of app developers
(e.g. app opt-out, access control), further discussion is required
that we hope this paper will initiate.

8. RELATED WORK
Techniques for web entity extraction and for task extraction, as well
as general analytics frameworks are related to our work.
Named entity recognition in the web. There are four broad
categories [22, 34]: rule-based, supervised [7, 21], semi-
supervised [31, 3, 25], and unsupervised [11, 19, 41]. Our approach

falls in the last category. We exploit cross- and in-page structural
similarity in mobile apps to overcome the challenge of insufficient
context in apps. Google Now on Tap and Bing Snapp [16, 40]
use their backend for semantic analysis. In contrast, Appstract en-
ables continuous and efficient entity type extraction of app contents,
using on-device entity templates. Unlike Google and Bing, App-
stract’s focus is not on extracting “entities,” but on extracting entity
types and relationships. Google and Bing could use Appstract tem-
plates to improve the privacy, and possibly the accuracy and the
efficiency of their entity extraction pipeline.

Entity recognition in the web for tweets is closely related to our
work due to the lack of context in both, tweets and mobile apps.
Ritter et al. show how existing entity recognition tools like Stan-
fordNER do not perform well in tweets, and develop a distantly
supervised approach which uses a dictionary of entities and La-
beledLDA models [32]. They observe an F1 score of 67% (an
increase of 52% over StanfordNER) by leveraging a custom-built
NLP pipeline (part-of-speech tagging, shallow parsing, capitaliza-
tion), which is designed to take advantage of the specific structure
of tweets. Similarly, Appstract is designed to take advantage of the
structure of mobile apps to achieve an accuracy of over 80%.
Task extraction. Insider [10] builds app task models for task com-
pletion. Insider’s templates are derived from tasks such as “search
for a song by artist in music-genre” which are defined manually.
Moreover, templates are generated using crowdsourcing. In con-
trast, 1) Appstract generates templates automatically, and 2) cap-
tures entity types, entity relationships and user actions. Insider fo-
cuses on extracting user context, whereas, Appstract also builds
a history of user behavioral data. Finally, Appstract is a general
framework that enables a range of new experiences (§5.2).
App and web analytics. AppInsight [30], Localytics [2],
Flurry [1] and Google Analytics [17] report app performance and
usage statistics. These systems do not report semantics of app us-
age and hence are not comparable to Appstract. For instance, Flurry
can log a click event, but cannot report that it is on a call button as-
sociated with a restaurant. Google Analytics [17] is a widely used
on-site analytics service for web personalization [12]. It is imple-
mented with “page tags,” JS code that site owners manually add
to their webpages. Unlike Appstract, it provides aggregated ana-
lytics across users, but not semantic information of a single user’s
activity.

9. CONCLUSIONS
We have proposed an architecture and a set of techniques for con-
tinuously extracting semantically-meaningful content from mobile
apps efficiently and on-device. Our approach does not send pri-
vate usage data to the cloud, so it can provide better privacy than
a cloud-based approach adopted by existing systems. Key to our
approach is the ability to automatically generate accurate entity
templates offline. We tested apps in the food, dining, and music
categories and achieved accuracy over 80%. However, Appstract is
applicable to many other categories with structured content: com-
munication, travel, shopping, entertainment, etc.
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