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CRêPE: A System for Enforcing Fine-Grained
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Abstract—Current smartphone systems allow the user to use
only marginally contextual information to specify the behavior of
the applications: this hinders the wide adoption of this technology
to its full potential. In this paper, we fill this gap by proposing
CRêPE, a fine-grained Context-Related Policy Enforcement
System for Android. While the concept of context-related access
control is not new, this is the first work that brings this concept into
the smartphone environment. In particular, in our work, a context
can be defined by: the status of variables sensed by physical (low
level) sensors, like time and location; additional processing on
these data via software (high level) sensors; or particular interac-
tions with the users or third parties. CRêPE allows context-related
policies to be set (even at runtime) by both the user and authorized
third parties locally (via an application) or remotely (via SMS,
MMS, Bluetooth, and QR-code). A thorough set of experiments
shows that our full implementation of CRêPE has a negligible
overhead in terms of energy consumption, time, and storage,
making our system ready for a production environment.

Index Terms—Android security, context policy, smartphone se-
curity.

I. INTRODUCTION

I N the world, there is an average of almost one mobile tele-
phone per human being (with small differences between de-

veloped and developing countries). The computational capabil-
ities of mobile phones have increased significantly in the last
years, leading to so called smartphones. These devices (just
“phones” in this paper) can actually run applications in such
a way that is similar to desktop computers. However, because
of the specific characteristics of smartphones (user mobility and
communication features among others), the security and privacy
of these devices is particularly exposed [1]. These challenges re-
duce the users’ confidence and make it more difficult to adopt
this technology to its full potential. To alleviate this problem,
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researchers have recently focused on enhancing phones’ secu-
rity models and their usability.
One significant challenge in the security of smartphones is to

control the behavior of applications and services (e.g. WiFi or
Bluetooth). In several smartphone systems the behavior of the
applications is completely under the control of a centralized en-
tity (e.g. once an application is installed, the user cannot control
its behavior). For example, Apple has complete control on the
applications installed on iPhone devices. In fact, the only way
to install applications onto a (non rooted) iPhone is by down-
loading them from the Apple App Store. And in turn, in order
to appear in the App Store, an application has to pass an Apple
vetting procedure.
However, even in systems where the user can control the be-

havior of the applications, this is still mostly based on policies
per application (non system-wide), and policies are set only at
installation time. For instance, in the J2ME platform each MI-
Dlet suite uses a JAD (Java Application Descriptor) file to pro-
vide the device at installation time with access control informa-
tion. Similarly, in Android [2] an application developer declares
in a manifest file all the permissions that the application must
have, in order for it to access protected parts of the API and to
interact with other applications. At installation time, these per-
missions are granted to the application based on its signature
and interaction with the user [3]. While Android gives more
flexibility than J2ME or other systems (the user is at least no-
tified about the resources that the application uses), granting
permissions all-at-once and only at installation time is still a
coarse-grained control: the user has no ability to govern how the
permissions are exercised after the installation. As an example,
Android does not allow policies that grant access to a resource
only for a fixed number of times, or only under some particular
circumstances. Meanwhile, to protect users’ privacy, the cur-
rent security models restrict trusted third parties’ control over
mobile phones. Typically, only the device manufacturer and the
network provider have control over the smartphone. There are
no mechanisms to allow other authorized parties (e.g. a com-
pany that provides a smartphone to its employee or the private
owner) to have full control over the behavior of the phone.
Hence, there is a need for a system that will help the user to

enforce the policies she defines, and help her to comply with
the policies specified by authorized third parties. The following
examples can be scenarios for which having a practical solution
might extend the usability of the phone:
• A user might want her Bluetooth interface to be discovered
when she is at home or in her office, not otherwise.

• A user might lend her phone to a friend, while the user does
not want her friend to be able to use some applications or
to have certain data available (e.g. SMSs).
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• For privacy purposes a user might want to automatically
restrict access to some data under certain conditions. For
example, a weather forecast application might be prohib-
ited to send out user’s location when she is at home.

• User’s smartphone might be a part of corporate infrastruc-
ture. However, the company wants to control its usage and
the security, e.g. prohibit phone usage during meetings or
forbid certain services when the employee is abroad.

• A smartphone can be used as a context detector component,
e.g. for fleet management, to associate drivers and vehicles
and know vehicles’ location and conditions.

We observe that currently there is no smartphone system that
is able to handle this behavior. In particular, there is no system
that incorporates all features at once: definition and identifica-
tion of fine-grained and dynamic contexts, policy enforcement
(i.e. make sure that the system is compliant with the behavior
described by the policy) in a system-wide manner, acceptance
of incoming settings [4], [5] at runtime—including the verifica-
tion of the trusted third party sending management messages.
Contribution. In this work, we fill the exposed gap by

presenting CRêPE, a fine-grained Context-Related Policies
Enforcement for Android [6]. This work is developed based on
our previous work [7], in which we presented the idea for the
first time and described a possible architecture and a proof of
concept implementation.
In the current work, we propose a new architectural design

of CRêPE, separating our system into several loosely coupled
modules. This separation gives CRêPE high flexibility of usage
and openness (to other developers). For example, a context can
be defined as a boolean expression that can take as input: the
data reported by low level physical sensors (e.g. location, time,
temperature, noise, light), processing on these data performed
with high level software sensors (e.g. to determine whether the
user is running, by using data from the accelerometer), or a par-
ticular interaction with authorized third parties. As for open-
ness, other developers can design (and integrate in CRêPE) new
high-level sensors—that might be required to fit new or very
specific needs. For example, a new high level sensor could be
designed to notify CRêPE when the phone has in its neighbor-
hood a fixed number of other devices (e.g. as an indication that
the user is in a crowded place). Also, parsers for different policy
specification languages (in addition to Ponder [8], the one we al-
ready considered) can be easily integrated in CRêPE.
We clarify that in our work we assume the user is not mali-

cious: she either wants to directly set the policy, or she wants to
obey the policies set by authorized parties (e.g. her company).
Hence, the security threats do not come from the phone users,
but rather from malicious applications installed on the phone, or
from unauthorized third parties that try to exploit the capability
of CRêPE to process incoming messages. Furthermore, we ob-
serve that CRêPE is a modification of the Android operating
system itself. Hence, removing CRêPE is not just as simple as
removing an application, and its removal would result in a non
working system.
We run a thorough set of experiments, whose results show a

negligible overhead in terms of energy, time, and storage. This
proves that our system is ready to be used in a production envi-
ronment.

Roadmap. Section II gives an overview of the related work in
the area, and describes the Android system. Section III presents
the basic architecture of CRêPE, while Section V discusses the
main peculiarities of our CRêPE implementation. Section IV
illustrates the language used for the definition of contexts and
policies. Section VI reports on a thorough set of experiments
we run to assess the overheads caused by CRêPE. Finally,
Section VII gives some concluding remarks.

II. RELATED WORK

The increasing popularity of smartphones attracts OS de-
signers to mobile platforms. The leaders in this market, such
as Microsoft, Apple, Google, RIM, and Nokia proposed their
own solutions. Moreover, different companies have joined to-
gether in alliances and projects (e.g. OpenMoko [9] and OMTP
[10]), that aim to produce secure and usable mobile devices.
The variety of the producers of mobile OS leads to a variety
of architectural solutions. While one group supplies closed
systems (e.g. Windows Mobile, Apple iOS), where Microsoft
and Apple have complete control on the third-party application
development and distribution, the second group (Google, RIM,
Nokia) provides more open systems, where users have more
control over the third-party applications.
When installing applications on the Apple iPhone, all the ap-

plications receive access to the same set of phone capabilities.
At runtime, an application explicitly asks to the user permission
for a particular functionality, e.g. GPS data [11]. A similar ap-
proach is adopted by Microsoft for Windows Phone 7 [12]. The
developer has to define which capabilities her application has
access to. During the installation, the system creates a sandbox
which has access only to the specified capabilities. During the
first usage of an application, the user is explicitly asked to grant
access to restricted resources [13]. In general, these closed sys-
tems enforce policies, only, at installation time.
Open systems provide more fine-grained policy enforcement.

As an example, the Java MIDP 2.0 security model restricts the
use of a sensitive permission (e.g. network access) depending
on the protection domain the application belongs to [14]. Sim-
ilarly, the Symbian system gives different permissions to Sym-
bian-signed programs [15]. There have been proposals to en-
force more fine-grained policies at runtime. For instance, in [16]
the authors present a system that allows users to define permis-
sions for each application.
Among open systems, the most popular operating system is

Android. In this system, during the installation of an application
the user can agree or disagree with the required permissions. If
the user does not want to grant these permissions, the applica-
tion will not be installed. The developers of third-party applica-
tions are empowered to use the full capabilities provided by the
system. At the same time, they should request only the neces-
sary permissions. Otherwise, it is more likely that the user will
not install the application. To help the users define which sets
of permissions can be dangerous, a system called Kirin [1] was
developed. Kirin can warn the user about an application that
may implement dangerous functionality during the installation
of this application.
Due to the lack of access control support at runtime in An-

droid, several approaches on enforcing fine-grained policies at
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runtime have been also proposed [17]–[19]. In [17] the authors
propose Saint, an installation- and runtime application manage-
ment system for Android [2]. The authors start from this obser-
vation: Android protects the phone from applications that act
maliciously, but provides severely limited infrastructure for in-
stalled applications to protect themselves. Leveraging on this
observation, the authors built Saint in order to allow Android
to be able to enforce application policies. Nauman et al. [19]
propose a context-related policy enforcement system that can
impose: resources-usage constraints that are determined by the
context of a user/application, and resource-usage constraints
that depend on the usage of this resource by the application. Bai
et al. [18] have adopted UCON model to provide a continuous
context-aware usage control framework for Android. The au-
thors propose the ConUCON tool, which uses spatial and tem-
poral context information to increase the user’s privacy and the
control of resource usage.
More recent papers [20], [21] concentrate on the protection

of user’s private data. In [20] the proposed system enables
possibilities to limit the access of the installed applications to
data (SMSs, contacts, calendar, location and device ID), and
to the components of the Android OS (access to the Internet
and broadcast intents). This approach is widened in [21]—the
authors provide the user with the ability to define the accuracy
level of the information revealed to the application.
To the best of our knowledge, the first solution to enforce

context-related policies in Android has been proposed in our
previous work [7]. In [7] we described a preliminary design
and implementation of CRêPE, and its functional requirements.
In particular, [7] is the first solution with the ability to enforce
fine-grained Context-Related Policies on Android. Differently
from Saint [17] (that focuses on application policies), CRêPE
aims to enforce fine-grained context-related policies defined by
the user (or other parties). Furthermore, the policies can be ap-
plied also in a system-wide manner, and can be set on the phones
also at runtime from both users and authorized third parties. Dif-
ferently from Apex [19] or other systems like the one in [18]
(that focused on the providing user-centric policies) CRêPE pro-
vides the ability to enforce policies from trusted parties (which
includes the user). This implies also an important functionality
of CRêPE: the capability to resolve possible conflicts between
policies coming from different (authorized) parties. Moreover,
CRêPE can change the policies at runtime (not just at installa-
tion time, as it is for other systems—e.g. Apex).

A. Context-Based Access Control Models

Researchers have already shown interest in context-based
access control, even if the meaning of “context” can be very
different (see [22]–[24], to cite a few).Theconceptof context that
we consider in our work is similar to “environment roles” used
in [25], which in turn has been specialized in [26]: accounting
for the specificity of spacial information (e.g. multigranularity
of the position; spatial relationships that may exist between
spatial elements in space). There are a lot of other works
that uses context information [27]–[31]. The recent examples
from the industry have shown that context aware security is

a prominent area of research. For instance, VMWare [32] is
developing a virtualization technology that separates personal
and corporate parts of smartphone. Finally, we also note that
CRêPE shares a common element with the access control
model of web services [33]: where policies depending on a
context might also be specified, when a proper access control
model is provided [34].
In this paper, we have focused on a complete design and dis-

cussion of our approach, together with a thorough practical eval-
uation. Thus, we have completely redesigned the architecture of
CRêPE, although many functionality remains the same as in [7].

B. Android Security Overview

We considered Android as reference platform because of its
increasing adoption by manufacturers, developers, users, and
researchers [1], [3], [17]. In this section, we give an overview
of the Android security model [2], [3].
Android combines two levels of security [3], [35]: at Linux

system level and at application framework level. At the former,
each application is executed in a separate user process, within
its own isolated address space (sandboxing). At the latter, as
discussed in [3] Android provides Mandatory Access Control
(MAC) [36] to application components, through the Intercom-
ponent Communication (ICC) reference monitor. In fact, as op-
posed to discretionary access control, a component is not ca-
pable of passing its permission to other components. Protected
features are assigned with unique security labels—permissions.
To make use of protected features, the developer of an applica-
tion must declare the required permissions in its package mani-
fest file—AndroidManifest.xml. The protection level can
be normal (these permissions are granted automatically), dan-
gerous (the user has to explicitly grant these permissions), sig-
nature (calling and called applications must be signed with the
same key) or signature or system (the applications should be
signed with the system key). When the user has the chance to
take a decision (protection case: dangerous), she has only two
choices: either grant the requested permissions or refuse to do
this. In the latter case, the application will not be installed. At
application runtime, Android has no mechanism to modify per-
missions.
We observe that the current Android security model cannot

serve our purpose of enforcing fine-grained context-related se-
curity policies. In fact, there are no mechanisms to enforce or
modify policies at application runtime.

III. CRÊPE

In this section, we describe the access control model, the ar-
chitecture, the components, and the main algorithms of CRêPE.
More precisely, in Section III-A we present the access control
model of CRêPE, in Section III-B we give an overview of the
CRêPE system. In Section III-C we consider its system architec-
ture and the main building blocks. After that, we discuss Con-
text Detection peculiarities in Section III-D. Section III-E ex-
plains our policy management and the fundamental algorithms
of CRêPE.
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Fig. 1. CRêPE access control model.

A. CRêPE Access Control Model

Before discussing the implementation challenges of our pro-
posal in the Android system, we provide here the Access Con-
trol Model of CRêPE. The model is illustrated in Fig. 1, using
standard concepts from XACML [37], [38]. Also, the model in
Fig. 1 can be considered as an instance of the UCON model
[5], where obligations are enforced by the Action Executors,
and the conditions are set by the Context Detector. We observe
that while our model has similarities with several access control
models involving contexts (e.g. [34]), in our model policies are
associated to contexts, and the dynamic activation/deactivation
of contexts (that determines which policies have to be enforced)
is detected automatically by the sensors present in every modern
smartphone. Overcoming existing limitations of Android, our
model allows to change and/or adapt policies also at application
runtime and not only at installation time. Furthermore, CRêPE
supports dynamic policy management, thus at any time the ad-
ministrator can set, delete and modify new contexts/policies at
runtime. If such changes require the system to invoke/stop ex-
isting service/application (e.g., disable internet while entering
in the meeting room not only require to prevent new connec-
tions but also require to shut down existing connections), this is
supported as well by the model.
In particular, there could be three different flows at runtime,

each identified by the different labeling of the arrows. The let-
ters , , , and show the processing flow of a runtime access
request: the request is intercepted (arrow ) by the Policy En-
forcement Point (PEP); this, in turn asks the Policy Decision
Point (PDP) whether the request should be granted; based on the
answer , the request will be granted or not. The roman
numbers , and show the flow of processing due to adminis-
trative commands. In fact, authorized parties can set contexts
and associated policies in the system (arrow 1). As a conse-
quence of this, the Policy Administration Point (PAP), notifies
the Context Detector that the newly set contexts need to be mon-
itored . The arabic numbers 1, 2, 3, 4, and 5 indicate the flow
of processing initiated by context becoming active/non active.
The Context Detector continuously monitors the environment
via phone sensors (arrow 1). As soon as a registered context
(set as described before) becomes active/non active, the Con-
text Detector notifies the PAP (2) that has to activate/deactivate
the new policy (composed by access control rules plus obliga-
tions). From all the contexts that are currently active, the PAP
decides (e.g. resolving conflicts) the set of rules that need to be
enforced. Hence, this information is passed on to the PDP (3).
PDP stores the information related to access control, while for-
wards to the PEP the obligations (4). PEP, in turn, is in charge to
take the actions specified by the obligation policies, this is done
via a component that we call Action Executor (5).

Fig. 2. CRêPE architecture: steps labeled with numbers represent the system
management procedure; steps labeled with letters represent enforcement proce-
dure.

B. Overview

CRêPE acts as a security mechanism in addition to the stan-
dard Android security mechanisms. It allows users and other
predefined trusted parties to define context-related policies,
which can be installed, updated and applied also system-wide
at runtime. Alternatively, these policies can be applied in a
fine-grained manner, e.g. for each application. A context-re-
lated policy is composed by two different type of policies:
• (i) an access control policy—composed of access rules;
• (ii) an obligation policy [5], [39]—that specifies actions
(i.e. start or stop an application; activate or disable a system
resource, like the camera).

Since there could be many policies and context providers, it
is possible that several contexts fulfil current conditions (i.e.
“being in Italy” and “being in Trento”). We call these contexts
as Active Contexts, and the policies corresponding to these
contexts as Active Policies. To resolve possible conflicts that
may raise in the access control policies, we have introduced
the Union and Conflict Resolution (UCR) function, which is
discussed in Section III-E. The result of this function is the
resolved union of active policies called the Currently Enforced
Policy (CEP).
It is worth noting that ActionExecutor allows CRêPE to en-

force ongoingObligations [5], e.g. pause downloading when en-
tering in a meeting room where connectivity is not allowed.

C. Architecture

CRêPE is implemented as a modification of Android. In fact,
it consists of its own components integrated in the Android
stack, as well as modified components of the Android Frame-
work. The architecture of CRêPE is summarized in Fig. 2, where
dashed boxes and underlined names clarify the mapping with
the model depicted in Fig. 1.
There are two main entry points for CRêPE policies: Local-

Administrator and RemoteAdministrator. LocalAdministrator is
an application by means of which the owner of the device can
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manage CRêPE via a GUI. RemoteAdministrator allows au-
thorized third parties to manage CRêPE remotely, using SMS,
MMS, Bluetooth, and QR-code (steps 1 and 2 in Fig. 2). Once
management messages are in the system, they are parsed by
Parser (Step 3), which is partially implemented as a standalone
application. In fact, the component of the Parser that actually
parses policies can be easily replaced, to let our system under-
stand policies defined in different languages. As shown in Fig. 2,
all these components that allow the administration of CRêPE
correspond to the Admin component in the model described in
Fig. 1.
CRePEManagerService is a central component of our system

(and corresponds to the PAP of the model in Fig. 1). It is re-
sponsible for general system management. It receives a policy
with an associated context (Step 4), stores them into the Pol-
icyAndContextDB database, and asks ContextDetector to start
monitoring (Step 5) the received context (ContextDetector is
described in Section III-D. If ContextDetector detects (Step 6)
that a context is activated or deactivated, it notifiesCRePEMan-
agerService about this (Step 7). CRePEManagerService calcu-
lates the Currently Enforced Policy (CEP) that regulates access
control, and loads it into ActiveRulesManager (Step 8).
For the enforcement procedure, the first thing to be noticed

is that when a policy becomes active, ActiveRulesManager
(which correspond to the PDP of the model in Fig. 1) noti-
fies the CRePEReferenceMonitor (the PEP) about the actions
specified by the activated obligation policy. A specific com-
ponent within CRePEReferenceMonitor, ActionExecutor, is
in charge to perform all the required actions. During system
operation, when a subject tries to access an object, CRePERef-
erenceMonitor intercepts this call (Step a), and checks if the
subject can access the object, according to CEP loaded into Ac-
tiveRulesManager (steps b and c). If the access is not allowed,
CRePEReferenceMonitor prohibits further interaction. Other-
wise, CRePEReferenceMonitor simply passes the call to the
standard Android Permission Checking mechanism (Step d).

D. Context Detection

With CRêPE it is possible to specify the behavior of a phone,
depending on its current context. In particular, the behavior is
specified by couples , where is a context, and is
the policy (including access control rules and actions) associ-
ated with . A context can be active or inactive (depending
on whether the conditions that define the context are satisfied).
When the context is active, the corresponding policy is also
active, i.e. the behavior specified by is enforced by CRêPE.
At any time couples of contexts and policies can be stored
in CRêPE . At the same time, a subset
of of these contexts and policies can be active. Further-
more, we underline that CRêPE does not pose any restriction
on the definition of two different contexts, e.g. a context can be
also subsumed by another context.
CRêPE supports both physical contexts (i.e. location, time,

online), which are associated to physical sensors (i.e. GPS,
clock, Bluetooth, etc.), and logical contexts, which are defined
by functions over physical sensors. Examples of logical sensors
are those that tell whether “the user is running in an open
space” (defined using the two physical sensors, location and

Fig. 3. Policy and rules.

accelerometer), or whether the user answering the phone call is
authorized to do so [40].
Contexts are defined as boolean expressions over physical

and logical sensors. ContextDetector contains those expres-
sions, and checks when they are satisfied. When a boolean
expression becomes true, ContextDetector notifies CRePE-
ManagerService that the corresponding context is activated.
CRêPE will hence enforce the corresponding policy (see
Section III-E3). In our architecture, ContextDetector is decou-
pled from the core of CRêPE. That is, ContextDetector does not
need to know anything about policies. Hence, it is possible to
develop this component independently from the other CRêPE
components, or to plug other context detector components into
CRêPE (e.g. ContextDroid [41]).

E. Policy Management

In this section, we describe the main concepts and the be-
havior of CRêPE with respect to policy management.
1) Policies, Rules, Actions: First, we introduce the con-

cept of a policy and a rule. We can think of a policy as
a matrix (Fig. 3), where the indexes of the rows are Sub-
jects (i.e. applications) and the indexes of the columns
are Objects (i.e. applications, and system resources like
camera and Bluetooth interface). Within the matrix, the rule

corresponding to the subject
and the object is identified as . A rule

specifies: an mode, which is whether the corresponding
subject is allowed or denied to access to the corresponding
object; and a , which is a number used to resolve
conflicts when colliding rules apply to the same combination
of a subject and an object. A context policy also includes an
obligation policy to specify actions. The obligation policy can
be seen as a simple vector of objects (not shown in the picture):
for each object the action might specify to start or stop the
object (i.e. the application or system resource corresponding to
the object index).
Each context (and its corresponding policy, made of access

control rules and actions) is defined by an authorized entity. We
refer to this entity also as the of the context (policy). The
owner can assign to each single rule or action a priority number.
In particular, each owner has an associated maximum priority
number: in her rules and actions, she can specify a priority that is
at most equal to her assigned maximum priority. When a policy
is installed on the phone, CRêPE checks that this constraint is
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not violated. CRêPE first verifies the validity of the certificate
of the owner: the certificate includes the identity, the public key,
and the maximum priority number, all these signed with the key
of the certification authority. Then, CRêPE checks that all the
priority numbers in the specified rules and actions are at most
equal to the max priority number stated in the certificate.
2) Policies Activation and Deactivation: When a context

(and its corresponding policy ) becomes active, CRêPE has
to perform some operations. Protocol 1 describes the procedure
that runs when a new policy becomes active, assuming
is the currently enforced policy. Basically, CRêPE has to inte-
grate in . This is done by building a list of policies (Pro-
tocol 2, Line 2)—where is the first element of the list—,
and invoking the function (Line 3) on that list. How the

function works will be explained later.

Protocol 1

1: Add in is the list of all active policies

2: is the first element of

3:

When a context (and its corresponding policy) becomes in-
active, CRêPE basically has to recompute based on the
policies that are still active. This is done as described in Protocol
2, again making use of the function. We note that, dif-
ferently from the activation scenario, in this protocol the
function is called (Protocol 2, Line 2) on the list of all the poli-
cies that remain active after removing the one just deactivated
(Line 1).

Protocol 2

1: Remove from

2:

3) Defining the Currently Enforced Policy (CEP): Each
context has an associated policy. However: 1) several contexts
might be active at the same time; 2) policies might specify
conflicting rules (e.g. a policy allows a subject to access a
given object, while another policy does not allow this). Hence,
CRêPE has to enforce a policy that is the result of the union
of all the policies corresponding to all active
contexts. Meanwhile, all conflicts among these policies have to
be solved. We refer to the resulting policy as the Currently En-
forced Policy (CEP). The computation of is done by the
Union and Conflict Resolution (UCR) function, as illustrated in
Fig. 4.
In CRêPE, we implemented the function as described

in Protocol 3. First of all, initializes as the first
policy element in the list (Protocol 3, Line 2). Then, it adds
to subjects and objects that are present in other policies
but not already in (Protocol 3, Lines 4–15). After this,

is filled. This is done using the
function (Protocol 3, Line 19), which takes as an input a set of
rules (referring to the same combination of subject and object;

Fig. 4. Computation of the currently enforced policy (CEP).

see Line 18) and computes the rule that is the outcome of the
resolution of all the rules in the set.

Protocol 3

1:

2:

3: Add indexes for Subjects and Objects in

4: for all do

5: for all do

6: if then

7: Add in

8: end if

9: end forall

10: for all do

11: if then

12: Add in

13: end if

14: end forall

15: end forall

16: Set the rules for

17: for all do

18:

19:

20: end forall

Protocol 4 describes how works
with respect to a set of (potentially) conflicting rules. We
assume that each policy that becomes active is processed
independently from the others, in order to insert its rules in
the Currently Enforced Policy . This protocol first
selects the rules with the highest priority (Protocol 4, Lines
2–3)—hence, following the principle of least privilege. Thus,
if there are several rules with the same highest priority number,
it checks if there is among them a deny rule (Protocol 4, Line
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4). In this case, it returns a deny rule (Line 5). Otherwise, it
returns an allow rule (Line 7).

Protocol 4

1:

2:

3: with

4: if such that ` ' then

5: return

6: else

7: return

8: end if

Concluding, both and (Protocol
1 and 2, respectively) use (Protocol 3), which in turn
uses (Protocol 4). As a result, the
computation and storage complexity of (as
well as ) is ,
i.e. it depends on three key factors: the number of active
policies, the number of subjects, and the number of objects in
the system—when the procedure is called. Since all these three
variables are bounded by small constants in practical systems,
the computation time and storage is negligible, as confirmed by
our experiments (Section VI-B).

IV. CRêPE LANGUAGE

In this section, we describe the incoming messages that
CRêPE can handle. No matter the way a message comes into
the phone (e.g. via SMS or MMS), after the system opens the
outermost packet (e.g. the one for handling the SMS), it obtains
what we call the CRêPE packet. This packet is specified using
XML. The format of a CRêPE packet is shown in Fig. 5, where
type specifies whether the packet is referred to:
(i) the specification of a context together with its associated
policy . Both are stored in
the CRêPE database. The policy is activated/deactivated
depending on the status of the corresponding context.

(ii) a policy specification . The reason for this type
of message is to get a policy into the phone. The policy
is not associated to a context: the only way to activate (or
deactivate) this policy is via commands.

(iii) a CRêPE command : i.e., an instruction re-
ferred to policies or CRêPE database (commands are de-
scribed in Section IV-C).

(iv) a command with a policy . In this
case, the policy is sent together with the command of ac-
tivating it.

In Fig. 5, CONTEXT_DEFINITION and POLICY_DEFI-
NITION are placeholders for the definition of a context and
a policy, respectively. Finally, SIGNATURE_STRING repre-
sents the signature of the sender of the message. CERTIFI-
CATE_STRING represents the certificate of the sender (it can
be presented as a whole, or just as the ID of a certificate that is
in the proper cache).

Fig. 5. XML message example.

Fig. 6. Policy example.

A. Context Specification

A context is defined via a simple boolean expression (AND,
OR, NOT), with mathematical comparisons
involving objects that refer to sensors (which can output boolean
value or real numbers). For example, the context defined as
(Time8)AND(Time16)AND(isRunning=True) be-
comes active if the user is running between 8 am and 4 pm.

B. Policy Specification

In order to be compatible with the current standards of policy
specification, we implemented a policy parser for (a subset of)
the Ponder language [4], [5]. The parser is designed as an in-
dependent component: CRêPE can be easily extended to un-
derstand other policy specifications, just by installing a proper
parser. Ponder is a declarative, object oriented language for
specifying security and management policies. In particular, it
allows general security policies to be specified as a set of rules.
Hence, we found Ponder appropriate to CRêPE for a simple
subject/object specification. Furthermore, Ponder also support
usage control policies [5] and obligations that we need to specify
actions (e.g. close an application, or start another one). In Fig. 6,
we report an example of the specification of a policy (i.e. a pos-
sible substitution of POLICY_DEFINITION placeholder of
Fig. 5). In this example, the policy consists of only two rules: the
first one allows all the subjects in to access the Internet
(this rule has priority 11); the second rule forbids the music ap-
plication to use the Bluetooth interface (this rule is with pri-
ority 10).
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C. CRêPE Commands

A command is a self contained instruction that is sent to the
phone. CRêPE supports the following commands to handle poli-
cies: , , and

. They can be used to activate, deactivate, and
delete the policy specified by , respectively. The
policy itself can be either: (i) already in the system, or (ii) come
together with the message that contains the command itself. In
the latter case, POLICY_DEFINITION component on the re-
ceived message is also filled. Finally, DEL can be used to reset
CRêPE, i.e. reset , and the Policy & Context database.

V. IMPLEMENTATION

In this section, we describe the most important implementa-
tion details of CRêPE, which is a modification of the Android
OS. The entire system is contained in 4,830 lines of code, added
to the base Android system (also referred to as stock Android),
in addition to changes to existing Android system components.
In particular, our code is based on the standard AOSP (Android
Open Source Project) [42] which we forked off in December
2010. CRêPE implementation impacts system services, frame-
work data structures, and system applications. For the policy-
parsing functionality we have ported the ANTLR Java Runtime
[43] to Android. The system is available for download at [6].

A. CRêPE Components

CRêPE operates on each of the three levels of abstraction of
the Android software stack (see Fig. 2): the User Level, the
Framework Level, and the Kernel Level (for Internet access
regulation, not shown in the figure), with the bulk of logic in
the framework. The system depends on a few base data struc-
tures that must be protected from all processes except the system
process. One of these data structures is the CRêPE central data-
base, which is managed (as explained later) by the CRePE-
DatabaseManager component. We make use of standard Unix-
like access permissions to protect this SQLite database file. An-
other relevant data structure is the cache of certificates. During
the boot of the Android Runtime, we create a /data/crepe
directory to hold our data structures and set appropriate per-
missions, so that only the system_server process can read/
write this directory.

(also named ; it
works at Framework Level). is the core of the system.
It is responsible for the orchestration of all tasks of CRêPE.

encapsulates the database manager (which is the only
component that talks to the CRêPE database described earlier)
and the access rules matrix. It serves as a callback point for
context detection. Finally, it also contains the code for the
CRêPE permission check which is hooked from the Activity
Manager Service. All policy resolution algorithms to calculate

are contained here.
ContextDetector (Framework Level). This component is re-

sponsible for context detection. registers for callbacks
from ContextDetector. The responsibility of this component is
to notify when a particular context is activated or de-
activated. ContextDetector combines inputs from several sen-
sors, which can be physical sensors (time, GPS, accelerometer,

orientation) as well as logical sensors (e.g. the one that detects
whether a user is running).
Authenticator (Framework Level). This component performs

all cryptographic operations required by CRêPE, e.g. the certifi-
cate and signature verification for commands coming from third
parties.We support X.509 format certificates. TheAuthenticator
component works in coordination with CertificateCache, which
caches the certificates. This behavior results in a smaller size of
incoming commands: if a corresponding certificate is already in
the cache it does not need to be sent together with the command.
PonderPolicyParser (User Level). We have implemented a

parser for a small variation of the Ponder Policy Specification
Language [8]. It resides in a service exposed by an APK (an-
droid package). The parser must register itself with .
With this mechanism, we have a flexible solution: it is possible
to make the system understand a totally different policy lan-
guage just by installing a proper APK.
CrepeReaper (Framework Level). CrepeReaper is respon-

sible for shutting down the processes in accordance with cur-
rently active policies. In particular, we first check if the process
is in background (i.e. it is not at the top of the Activity Stack). If
it is so, the process will be just killed. Otherwise (if the process
is the one in foreground), we launch a “decoy” activity which
forces the previous activity to be pushed to run in background.
This, in turn, forces the execution of onPause() in the Ac-
tivity lifecycle, which gives developers a chance to gracefully
save the process state. We then terminate the process and the
“decoy” as well.
CRePEIPTables (Kernel Level). It communicates with ipt-

ables (userspace Linux application program), which in turn
manages the netfilter modules. CRePEIPTables is hence
used to setup firewall rules for network access.

B. Access Regulation

We place the hook for CRêPE checks in the regular Android
check. The public method checkPermission(Per-
mission, ProcessID, UserID) inside Activity-
ManagerService is the only public entry point for all
permissions checking. Inside checkPermission method,
and before the logic of the Android permission check, we
invoke our own checkCrepePermission. If the particular
operation is allowed by , the system performs a normal
Android permission check. We implemented the access matrix
as a Hash Map, which gives us an efficient access time (just
constant in most cases) to a particular (subject, object) combi-
nation. In the following, we give some details how the access
is regulated for specific objects.
Applications can act as subjects and objects in our model.

When an application acts as a Subject, we make use of Binder
API to discover its UID (i.e. the UID of the caller process). An
application acts as an Object when it is to be started. During
the installation and reinstallation of an application it can change
the UID. For this reason, in our policies we use package names,
which are unique across the system. During the uninstallation
of an applications, we remove the row and the column of the
UID corresponding to our application from (we can do
this using the function that transforms a package name into the
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UID). During the installation of the application we reset
and run the function for all currently active policies.
Restricting access to the Internet in the Android framework

is done through permissions which control whether a process
is part of the inet group. In fact, only applications that are
included into inet Linux group (granted with permission
android.permission.Internet) have access to the
Internet. This cannot be changed at runtime. To create/remove
rules at runtime, based on UIDs to drop or to forward packets,
we use IPTables (based on netfilter). For Bluetooth,
Permission check hooks are placed in BluetoothSocket
and BluetoothServerSocket methods, which at first
consult with before establishing any connections. Re-
sources protected by Android permissions (like the camera,
the microphone, or application components) are also protected
by Android permissions—these permissions strings acts as
Objects in our system.

C. System Management

In this section we describe how to manage CRêPE. In par-
ticular, this can be done both locally and remotely by all the
authorized parties, including the user.
1) Local Management: Local management is done via the

LocalAdministrator component. It includes a GUI to create new
policies and activate/deactivate them. With this GUI (whose
screenshots are not reported for space limitation) the user can
define a context and its associated policy, i.e. a set of rules.
For each rule, the user can specify: subject (including “ ”, i.e.
any) and object involved, rule type (Allow/Deny), and Priority
number. The user can also manually activate or deactivate
policies already defined on the phone. Deletion and modifica-
tion is also supported. While in the current implementation the
context (e.g. a location) must be defined via a textual interface
specifying a boolean expression (e.g. with , and

variables), we are working to make the speci-
fication of the area more user friendly, like drawing an area
on a map. Access to LocalAdministrator is protected via a
password—which is stored in the CRêPE central database.
2) Remote Management: The trust architecture for remote

management (via messages sent to the device) is done via a
Public Key Infrastructure (PKI). An incoming message for
CRêPE has to come with the certificate of the sender. A certifi-
cate can be transmitted in-band or just as an ID (corresponding
to a cached certificate). All certificates should be in the X.509
format. We use standard Java APIs to manipulate and verify
certificates. The CA certificate is embedded in the system
image at build time. All other certificates are cached in the
/data/crepe/certificates directory. The algorithm
used for signature is SHA1 with RSA and a 2048-bit RSA
public key. For all the algorithms, we use the BouncyCastle
APIs—as also done by Android itself.
Messages can be sent as SMS, over Bluetooth and as

QR-codes.

VI. SYSTEM EVALUATION

This section is devoted to the evaluation of CRêPE. We first
discuss the effectiveness of its security (Section IV-A). Then, we

report and discuss the experimental evaluation of its efficiency.1

(Section IV-B).

A. Effectiveness: Security

We recall that we assume the user is non malicious, while the
security threats for our system come from: (i) malicious appli-
cations; (ii) or even from unauthorized third parties that try to
exploit the communication system of CRêPE. Although CRêPE
could be extended to enforce security against a malicious phone
user (e.g. based on solutions like ARM TrustZone [44]), this is
out of the scope of this work.
Considering malicious applications, we observe that CRêPE

does not reduce the security of Android, though it can improve
its security significantly in several cases. We first discuss why
CRêPE does not reduce the security of Android. In fact, for each
requested access to an application or system service, CRêPE
only adds further checks, i.e. its own checks that depend on the
active CRêPE policies. Each access that is not denied by CRêPE
is passed on to the Android Permission Check and not influ-
enced by CRêPE anymore. As a result, CRêPE can only reduce
the number of accesses allowed, but not reduce the security of
stock Android, because its checks on actually executed actions
occurs in any case.
We observe that CRêPE can also improve the security of

stock Android in several cases. For instance, let us consider a
recent Android vulnerability [45]: an intruder in public WiFi
networks can eavesdrop and then use for two weeks an autho-
rization token used by a number of applications. With CRêPE
this problem could have been solved, by sending to the phone a
policy restricting the use of these applications on their network.
As another example of security improvement, we observe that
the current delegation mechanism of Android has a weakness
that CRêPE fixes to some extent. In particular, we consider the
following to be a weakness. An application is allowed to
access a resource (e.g. to use the Bluetooth service). de-
fines a permission for its component (that ac-
tually uses the resource). defines with
level which is automatically granted without asking for explicit
approval from the user. This would imply that any other ap-
plication can use the same referred resource, while the user is
not actually aware of this. To some extent, CRêPE helps to pre-
vent this kind of compromise. A CRêPE policy could be defined
by the user to limit the access to resources in some necessary
situations. For instance, the user can define a policy allowing
to use Bluetooth only at home or the office, which are trusted
environments (in this case, the context will be detected by the
CRêPE ContextDetector component via the GPS sensor). The
policy will be applied system-wide, irrespective of which appli-
cation requests access.
Another important observation is that since CRêPE has a

modular architecture, the interactions between the components
must be also protected. For this purpose we use standard An-
droid mechanisms. All exported CRêPE components are pro-
tected with permissions with the protection level: signature.
This means that only components and applications signed with

1Results data can be found at http://www.crepedroid.org/eval_raw.zip
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the same key can access the protected components. Thus, basi-
cally only other CRêPE components can interact with these ex-
ported components. Therefore, the parts of CRêPE that work at
the application level (i.e. LocalAdministator and Parser) must
be also signed with CRêPE signature.
The remaining security issue to be discussed is the threat

coming from unauthorized third parties that try to exploit the
communication system of CRêPE. We protect the system from
such type of attacks by a PKI system with X.509 certificates.
The CRêPE system is installed with the certificate of a root cer-
tification authority (CA), e.g. a company will put its certificate
as root authority in the phones given to its employees. For each
incoming message, CRêPE checks that the message is coming
either from the CA or from another entity with a certificate is-
sued by the certification authority (e.g. a specific department of
the company). New authorized certificates will be stored in the
CRêPE cache. Certificates can have an expiration date or can
be revoked via a specific command. Finally, to avoid replay at-
tacks, each sent message has to carry a time stamp.

B. Efficiency: Overhead

In this section, we report the results of a set of thorough ex-
periments we run in order to evaluate the design and implemen-
tation of CRêPE. In particular, we investigated the following is-
sues that we believe are fundamental in smartphone usage: time
overhead (Section VI-B1), energy overhead (Section VI-B2),
and storage overhead (Section VI-B2). For all the experiments
reported in this sections we used the Google Dev 3 phone (HTC
Nexus One).
1) Time Overhead: For all the experiments related to time

overhead, we used a call to System.nanoTime() before and
after the operations to be measured. In particular, we considered
the points where CRêPE can add delay.

a) CRêPE permission check: Each time a subject accesses
an object within the set of the “controlled” objects (i.e. the ob-
jects in the matrix, see Section III-E3), CRêPE has to
run its check. To understand what is the time overhead intro-
duced by this CRêPE check, we ran the following experiments.
First, we considered a smartphone running stock Android. We
then simulated regular phone usage by having the phone be-
have as follows for 120 minutes: at minute 0, and every ten
minutes, the phone started a call (lasting 110 seconds), then
started and closed a set of applications (in order: MMS, Con-
tacts, Gallery, Email, Music, and Calendar). From this, we ob-
tained a large body of check permission timing information. We
measured the time spent within the Android check. In particular,
we measured the time spent in checking each specific permis-
sion type. Then, we ran a similar experiment on a Dev 3 phone
with CRêPE: the time spent for permission check now including
also the CRêPE checks. In this scenario, we ran the experiment
for different number of rules in the system: 0, 15, 30, 45, and
60. In the case of CRêPE installed, we ran all the experiments
twice. First, assuming that CRêPE was able to get commands
via Bluetooth (hence turning on the Bluetooth interface every
5 minutes); then without this functionality. The results of this
experiment are shown in Figs. 7(a) and 7(b), for Bluetooth ac-
tive, and not active, respectively. To help the comparison, we
report the value for stock Android in both figures.

From these figures, we observe that the time overhead for
both stock Android and CRêPE permission check is negligible
and not noticeable by the user, no matter the specific setting. In
the worst case (that is observed for CRêPE with 45 rules, and
Bluetooth active), the overall time overhead during 120 minutes
is less than two seconds. Another important observation is the
following: the time overhead for CRêPE permission check is al-
most independent from the number of subjects and objects. We
note that this was not the case in the previous proof-of-concept
implementation of CRêPE [7]. In fact, in [7] the active rules
were organized in a list, hence requiring a check time overhead
linear with the number of active rules. Current CRêPE enforce-
ment is implemented via a table of active rules , where
lookup is constant.
From both Fig. 7(a) and Fig. 7(b), we note that the time over-

head is not uniformly increasing with the increase of the number
of rules. In fact, while adding a rule adds some overhead due to
the check of this new rule, this might also decrease the total
overhead. This is due to the following fact: even a single rule
might change the execution path of the application. For ex-
ample, let us consider the case of an application that requests
access to a resource (which implies a permission check), and
then it does a lot of operations on that resource (each operation
implying a permission check). If it is added a new rule that avoid
the application to get the resource in the first place, then all the
operations on that resources will be just skipped (hence, saving
all the time overhead for all the associated permission checks).
This motivation is also supported by the fact that increasing the
considered set of rules, the time spent in a specific permission
check decreases in some cases. For example, let us consider the
scenario without Bluetooth active (Fig. 7(b)). If we move from
the setting with 15 rules ( -axis), to the one with 30 rules (which
include the previous 15 rules), the time spent in checking the
READ_CONTACTS permission goes from more than 225 ms (in
over 120 minutes of experiment), to some 16 ms.

b) Policy activation and deactivation: Each time a policy
is activated (deactivated) as a result of the corresponding
context becoming active (inactive), CRêPE needs to update
the matrix. First, we investigated the cost of activation
and deactivation of a policy, assuming no conflicting rules.
We started the experiment with policies and already
active ( having 10 rules; having 10 rules; and
not having conflicting rules). Then, we considered a policy

with a number of rules varying from 1 to 40. In none of
these cases there were conflicting rules. For each considered
number of rules for , we activated and deactivated policy
100 times. We measured the time overhead for each activation
and deactivation. Results (average and standard deviation, s.d.)
are shown in Fig. 8(a).
From this figure, we first observe that the time cost of policy

deactivation is higher than the one of policy activation. As ex-
pected, this is due to the mechanism described in Section III-E3.
In fact, deactivating a policy implies: 1) reinitialization of the
data structure for ; 2) reactivation of all the policies ex-
cept the deactivated one. From other experiments (not shown
in Fig. 8(a)), we noticed that even when a single policy is ac-
tive on the system, the deactivation of this single policy costs
more than its activation (for a policy with 10 rules activation
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Fig. 7. Time overhead for permission check. (a) With Bluetooth. (b) Without
Bluetooth.

Fig. 8. Time overhead: CRêPE policy activation and deactivation. (a) Influence
of number of rules; (b) influence of number of conflicts.

cost some 90 ms, while deactivation costs some 140 ms). For
the activation, the cost of adding a rule is the one of a lookup
in the table. In the cases when a rule is already specified for the
given combination of a subject and an object, the cost of con-
flict resolution should be added. By implementation, having
active rules the cost for the deactivation of a rule is equal to the
activation of rules. Finally, we also note that the number
of rules in the policy that is deactivated does not play any
role in the cost for deactivation. Again, this is due to the specific
implementation of the deactivation (i.e. initialization, and reac-
tivation of and ). Finally, we observe that the number of
rules does not have any significant impact on the time overhead
both for activation and deactivation of a policy.
After the experiment without considering conflicting rules we

investigated the time overhead also in this latter case. In partic-
ular, we considered the starting settings as in the previous exper-
iment. Given this setting, policy (40 rules) was considered
with a varying number of conflicts (from 1 up to 20) with poli-
cies and . For each number of conflicting rules activation
and deactivation of was done 100 times. Results (average
and standard deviation) are shown in Fig. 8(b). Observe that the
first point of Figs. 8(b) (number of ) corresponds
to the last point of Fig. 8(a)}.
From Fig. 8(b), we observe that again the overhead is negli-

gible. Also, as observed from the previous experiment (with no
conflicting rules in ), the overhead for deactivation is con-
stant (since the deactivated rules do not influence the deactiva-
tion process). Finally, we observe that the activation time over-
head is influenced by the number of conflicting rules—while
remaining negligible.

c) Incoming commands: Here we report on the investiga-
tion of the time overhead to handle incoming messages intended
for CRêPE. In particular, we recall that we have four different
types of incoming messages (see Section IV): (i) Command;

Fig. 9. Message processing time. Average (and standard deviation).

(ii) Policy; (iii) Context and Policy; (iv) Command and Policy.
For each message the time overhead is composed of two ele-
ments. The first one is the time to receive the message—hence
it is dependent on the specific technology used (e.g. Bluetooth
or SMS). The second one is the time for processing the received
message. The processing time includes also: parsing, signature
verification, and certificate verification.
In our experiment, we focused on a simple message (Com-

mand type) and a more common and a longer message (Con-
text and Policy type). For the second type, we also considered
different possible sizes: 15, 30, and 60 rules. For each of this
messages, we sent it 100 times to CRêPE, and measured the
time overhead. The results for processing time are summarized
in Fig. 9. From the figure, we can observe that the time overhead
for processing is at most 1,264.46 ms (s.d. 1,149.59)—that is,
for processing a Context and Policy message with 60 rules.
2) Energy Overhead: To assess energy overhead we used the

tool described in [46]. We ran several experiments considering
the phone behavior as described in Section VI-B1 (automati-
cally placing a call and starting few applications every 10 min-
utes, over a period of 120 minutes). In particular, we repeated
the experiment 10 times for each of the following: stock An-
droid, and CRêPE for 15 active rules. Fig. 10 shows the resulting
average for the battery voltage. The battery starts at 4,150 mV in
both systems. However, after two hours of usage, the battery has
a voltage of some 4,058 mV and 3,950 mV, for stock Android
and CRêPE, respectively. Note that, as reported by the power
tutor tool, these values correspond to a residual battery level of
91.2% and 78.4% after 120 minutes of usage, for stock Android
and CRêPE, respectively. Observe that this percentage does not
directly correspond to the residual mV, since, for example, the
minimum amount of mV required for the phone to work is .
With regard to the energy consumption for the context de-

tection, we observe that the main impact comes from the tech-
nology (e.g. GPS) used for detecting the context. In particular,
checking the time variable is not noticeable in terms of de-
creasing battery level. Also the energy required by the Bluetooth
interface is quite small: we observed a contribution to the bat-
tery consumption of less than 1%. However, when the context
depends on GPS, energy consumption becomes more signifi-
cant. For example, having the GPS interface always on for one
hour, brings the battery level on an average (10 experiments) of
93.4% (s.d. 1.95%), which corresponds to a voltage of 4,053mV
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Fig. 10. CRèPE energy consumption.

(s.d. 22.9 mV). We observe that optimization on this point (i.e.
mainly for GPS consumption) can be done if a less responsive
system is acceptable—e.g. turning on the GPS interface only at
fixed time intervals, or considering only other less grained lo-
calization technologies in A-GPS [47].
3) Storage Overhead: The most critical components of

CRêPE from the storage point of view are the CRêPE policy
and context database, , and the cache of certificates for
authorized third parties. The sizes of the policies considered
in the previous experiments (Section VI-B1A) are 4,643,
5,993, 7,335, and 8,773 bytes, for 15, 30, 45, and 60 rules,
respectively—i.e. considering the first (oldest) Google Dev
Phone (HTC Dream, with 192 MB of RAM and 256 MB of
internal flash memory), this represents just 0.0023%, 0.0030%,
0.0036%, and 0.0044% of the RAM, respectively.

, when the policy with 60 rules is loaded, takes
2,146 bytes (0.0011% of RAM), while the corresponding
CRêPE database takes 9,216 bytes (0.0034% of flash). We
remind that when the policy is in the database it has a different
representation than . Furthermore, the database contains
also the information about the context associated to the policy.
The message of the command with the policy considered in
the experiment in Section VI-B1C is 3,248 bytes. Finally, our
certificates have a size of some 2,700 bytes (0.0010% of flash).
We argue that all the storage requirements are very feasible for
Android smartphones currently on the market.

VII. CONCLUDING REMARKS

The lack of the possibility—for users and authorized third
parties—to regulate the behavior of smartphones, based on the
context in which they are, makes it difficult to adopt this tech-
nology to its full potential. As an example, a user might avoid
to install an application if she cannot control its behavior at any
time. Furthermore, the user might want the phone to change
(even automatically) its behavior accordingly to some contex-
tual situations. In this paper, we propose a solution for these
problems: CRêPE (Context-Related Policy Enforcing for An-
droid). This is the first system that enforces fine-grained con-
text-related policies that can be set by both the phone users and
the authorized third parties. Also, policies can be set at run-
time and remotely, via SMS, MMS, Bluetooth, or QR-code.
We have designed and implemented CRêPE. Experimental re-
sults support not only the feasibility of the proposal, but also
its efficiency against the main issues of mobile devices (en-
ergy consumption, responsiveness, and storage). While in some

scenarios CRêPE could be managed remotely by experts (e.g.
the IT Department of a company that gives phones to its em-
ployees), in other cases regular users have to do it. As future
work we plan to: (i) study to which extent users would be willing
and able to manage CRêPE; (ii) predefine general purpose poli-
cies that the user might just activate/deactivate based on her
needs.
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