
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

FlowFence: Practical Data Protection for Emerging
IoT Application Frameworks

Earlence Fernandes, Justin Paupore, and Amir Rahmati, University of Michigan;
Daniel Simionato and Mauro Conti, University of Padova;

Atul Prakash, University of Michigan

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes

USENIX Association 25th USENIX Security Symposium 531

FlowFence: Practical Data Protection for
Emerging IoT Application Frameworks

Earlence Fernandes1, Justin Paupore1, Amir Rahmati1, Daniel Simionato2

Mauro Conti2, Atul Prakash1

1University of Michigan 2University of Padova

Abstract
Emerging IoT programming frameworks enable build-

ing apps that compute on sensitive data produced by
smart homes and wearables. However, these frameworks
only support permission-based access control on sensi-
tive data, which is ineffective at controlling how apps
use data once they gain access. To address this limita-
tion, we present FlowFence, a system that requires con-
sumers of sensitive data to declare their intended data
flow patterns, which it enforces with low overhead, while
blocking all other undeclared flows. FlowFence achieves
this by explicitly embedding data flows and the related
control flows within app structure. Developers use Flow-
Fence support to split their apps into two components:
(1) A set of Quarantined Modules that operate on sensi-
tive data in sandboxes, and (2) Code that does not operate
on sensitive data but orchestrates execution by chaining
Quarantined Modules together via taint-tracked opaque
handles—references to data that can only be derefer-
enced inside sandboxes. We studied three existing IoT
frameworks to derive key functionality goals for Flow-
Fence, and we then ported three existing IoT apps. Se-
curing these apps using FlowFence resulted in an aver-
age increase in size from 232 lines to 332 lines of source
code. Performance results on ported apps indicate that
FlowFence is practical: A face-recognition based door-
controller app incurred a 4.9% latency overhead to rec-
ognize a face and unlock a door.

1 Introduction

The Internet of Things (IoT) consists of several data-
producing devices (e.g., activity trackers, presence de-
tectors, door state sensors), and data-consuming apps
that optionally actuate physical devices. Much of this
data is privacy sensitive, such as heart rates and home
occupancy patterns. More importantly, we are see-
ing an emergence of application frameworks that en-
able third party developers to build apps that compute

on such data—Samsung SmartThings [55], Google Bril-
lo/Weave [30], Vera [5], and Apple HomeKit [8] are a
few examples.

Consider a smart home app that allows unlocking a
door via face recognition using a camera at the door.
Home owners may also want to check the state of the
door from a secure Internet site (thus, the app requires
Internet access). Additionally, the user also wants to en-
sure that the app does not leak camera data to the Inter-
net. Although this app is useful, it also has the potential
to steal camera data. Therefore, enabling apps to com-
pute on sensitive data the IoT generates, while preventing
data abuse, is an important problem that we address.

Current approaches to data security in emerging
IoT frameworks are modeled after existing smartphone
frameworks (§2). In particular, IoT frameworks use
permission-based access control for data sources and
sinks, but they do not control flows between the autho-
rized sources and sinks. This method has already proved
to be inadequate, as is evident from the growing re-
ports of data-stealing malware in the smartphone [73]
and browser extension spaces [36, 14]. The fundamen-
tal problem is that users have no choice but to take it on
faith that an app will not abuse its permissions. Instead,
we need a solution that forces apps to make their data use
patterns explicit, and then enforce the declared informa-
tion flows, while preventing all other flows.

Techniques like the recognizer OS abstraction [39]
could enable privacy-respecting apps by reducing the fi-
delity of data released to apps so that non-essential but
privacy violating data is removed. However, these tech-
niques fundamentally depend on the characteristics of a
particular class of applications (§7). For example, image
processing apps may not need HD camera streams and,
thus, removing detail from those streams to improve pri-
vacy is feasible. However, this may not be an option in
the general case for apps operating on other types of sen-
sitive data.

Dynamic or static taint analysis has been suggested

532 25th USENIX Security Symposium USENIX Association

as a method to address the limitations of the above
permission-based systems [60, 53]. Unfortunately, cur-
rent dynamic taint analysis techniques have difficulty in
dealing with implicit flows and concurrency [59], may
require specialized hardware [70, 54, 65], or tend to
have significant overhead [48]. Static taint analysis tech-
niques [9, 21, 66, 45] alleviate run-time performance
overhead issues, but they still have difficulty in han-
dling implicit flows. Furthermore, some flow-control
techniques require developers to use special-purpose lan-
guages, for example, JFlow [45].

We present FlowFence, a system that enables ro-
bust and efficient flow control between sources and
sinks in IoT applications. FlowFence addresses several
challenges including not requiring the use of special-
purpose languages, avoiding implicit flows, not requir-
ing instruction-level information flow control, support-
ing flow policy rules for IoT apps, as well as IoT-specific
challenges like supporting diverse app flows involving a
variety of device data sources.

A key idea behind FlowFence is its new information
flow model, that we refer to as Opacified Computation.
A data-publishing app (or sensitive source) tags its data
with a taint label. Developers write data-consuming apps
so that sensitive data is only processed within designated
functions that run in FlowFence-provided sandboxes for
which taints are automatically tracked. Therefore, an app
consists of a set of designated functions that compute on
sensitive data, and code that does not compute on sensi-
tive data. FlowFence only makes sensitive data available
to apps via functions that they submit for execution in
FlowFence-provided sandboxes.

When such a function completes execution, Flow-
Fence converts the function’s return data into an opaque
handle before returning control to the non-sensitive code
of the app. An opaque handle has a hidden reference to
raw sensitive data, is associated with a taint set that rep-
resents the taint labels corresponding to sensitive data ac-
cessed in generating the handle, and can only be derefer-
enced within a sandbox. Outside a sandbox, the opaque
handle does not reveal any information about the data
type, size, taint label, any uncaught exception in the func-
tion, or contents. When a opaque handle is passed as
a parameter into another function to be executed in a
sandbox, the opaque handle is dereferenced before ex-
ecuting the function, and its taint set added to that sand-
box. When a function wants to declassify data to a sink,
it makes use of FlowFence-provided Trusted APIs that
check <source, sink> flow policies before declassifying
data. The functions operating on sensitive data can com-
municate with other functions, and developers can chain
functions together to achieve useful computations but
only through well-defined FlowFence-controlled chan-
nels and only through the use of opaque handles.

Therefore, at a high level, FlowFence creates a data
flow graph at runtime, whose nodes are functions, and
whose edges are either raw data inputs or data flows
formed by passing opaque handles between functions.
Since FlowFence explicitly controls the channels to
share handles as well as declassification of handles (via
Trusted API), it is in a position to act as a secure and
powerful reference monitor on data flows. Since the han-
dles are opaque, untrusted code cannot predicate on the
handles outside a sandbox to create implicit flows. Apps
can predicate on handles within a sandbox, but the return
value of a function will always be tainted with the taint
labels of any data consumed, preventing apps from strip-
ping taint. An app can access multiple sources and sinks,
and it can support multiple flows among them, subject to
a stated flow policy.

Since sensitive data is accessible only to functions ex-
ecuting within sandboxes, developers must identify such
functions to FlowFence—they encapsulate functions op-
erating on sensitive data in Java classes and then reg-
ister those classes with FlowFence infrastructure. Fur-
thermore, FlowFence treats a function in a sandbox as a
blackbox, scrutinizing only communications into and out
of it, making taint-tracking efficient.

FlowFence builds on concepts from systems for en-
forcing flow policies at the component level, for exam-
ple, COWL for JavaScript [63] and Hails for web frame-
works [28, 52]. FlowFence is specifically tailored for
supporting IoT application development. Specifically,
motivated by our study of three existing IoT application
frameworks, FlowFence includes a flexible Key-Value
store and event mechanism that supports common IoT
app programming paradigms. It also supports the notion
of a discretionary flow policy for consumer apps that en-
ables apps to declare their flow policies in their manifest
(and thus the policy is visible prior to an app’s deploy-
ment). FlowFence ensures that the IoT app is restricted
to its stated flow policy.

Our work focuses on tailoring FlowFence to IoT do-
mains because they are still emerging, giving us the op-
portunity to build a flow control primitive directly into
application structure. Flow-based protections could, in
principle, be applied to other domains, but challenges
are often domain-specific. This work solves IoT-specific
challenges. We discuss the applicability of Opacified
Computation to other domains in §6.
Our Contributions:

• We conduct a study of three major existing IoT frame-
works that span the domains of smart homes, and
wearables (i.e. Samsung SmartThings, Google Fit,
and Android Sensor API) to analyze IoT-specific chal-
lenges and security design issues, and to inform the
functionality goals for an IoT application framework
(§2).

USENIX Association 25th USENIX Security Symposium 533

• Based on our findings we design the Opacified Com-
putation model, which enables robust and efficient
source to sink flow control (§3).

• We realize the Opacified Computation model through
the design of FlowFence for IoT platforms. Our pro-
totype runs on a Nexus 4 with Android that acts as
our “IoT Hub” (§4). FlowFence only requires pro-
cess isolation and IPC services from the underlying
OS, thus minimizing the requirements placed on the
hardware/OS.

• We perform a thorough evaluation of FlowFence
framework (§5). We find that each sandbox requires
2.7MB of memory on average. Average latency for
calls to functions across a sandbox boundary in our
tests was 92ms or less. To understand the impact
of these overheads on end-to-end performance, we
ported three existing IoT apps to FlowFence (§5.2).
Adapting these apps to use FlowFence resulted in av-
erage size of apps going up from 232 lines to 332
lines of source code. A single developer with no prior
knowledge of the FlowFence API took five days to-
tal to port all these apps. Macro-benchmarks on these
apps (latency and throughput) indicate that FlowFence
performance overhead is acceptable: we found a 4.9%
increase in latency for an app that performs face recog-
nition, and we found a negligible reduction in through-
put for a wearable heart beat calculator app. In terms
of security, we found that the flow policies correctly
enforce flow control over these three apps (§5.2).
Based on this evaluation, we find FlowFence to be a
practical, secure, and efficient framework for IoT ap-
plications.

2 IoT Framework Study:
Platforms and Threats

We performed an analysis of existing IoT application
programming frameworks, apps, and their security mod-
els to inform FlowFence design, distill key function-
ality requirements, and discover security design short-
comings. Our study involved analyzing three popular
programming frameworks covering three classes of IoT
apps: (1) Samsung SmartThings for the smart home, (2)
Google Fit for wearables, and (3) Android Sensor API
for quantified-self apps.1 We manually inspected API
documentation, and mapped it to design patterns. We
found that across the three frameworks, access to IoT
sensor data falls in one of the following design patterns:
(1) The polling pattern involving apps polling an IoT de-
vice’s current state; and (2) The callback pattern involv-

1Quantified Self refers to data acquisition and processing on aspects
of a person’s daily life, e.g., calories consumed.

ing apps registering callback functions that are invoked
whenever an IoT device’s state changes.2

We also found that it is desirable for publishers and
consumers to operate in a device-agnostic way, without
being explicitly connected to each other, e.g., a heart rate
monitor may go offline when a wearable is out of Blue-
tooth range; the consumer should not have to listen to
lifecycle events of the heart rate monitor—it only needs
the heart beat data whenever that is available. Ideally, the
consumer should only need to specify the type of data it
requires, and the IoT framework should provide this data,
while abstracting away the details. Furthermore, this is
desirable because there are many types of individual de-
vices that ultimately provide the same kind of data, e.g.,
there are many kinds of heart rate monitors eventually
providing heart rate data.

A practical IoT programming framework should sup-
port the two data sharing patterns described above in a
device-agnostic manner. In terms of security, we found
that all three frameworks offer permission-based access
control, but they do not provide any methods to control
data use once apps gain access to a resource. We provide
brief detail on each of these frameworks below.
1) Samsung SmartThings. SmartThings is a smart
home app programming framework [4] with support for
132 device types ranging from wall plugs to ZWave door
locks. SmartThings provides two types of APIs to ac-
cess device data: subscribe and poll. The subscribe
API is the callback design pattern. For instance, to ob-
tain a ZWave door lock’s current state, an app would
issue a call of the form subscribe(lockDevice,

"lock.state", callback). The subscribe API ab-
stracts away details of retrieving data from a device, and
directly presents the data to consumers, allowing them
to operate in a disconnected manner. The poll API
is the polling pattern. For example, an app can invoke
lockDevice.currentState to retrieve the state of the
lock at that point in time.

For permission control, the end-user is prompted to
authorize an app’s access request to a device [57], based
on a matching of SmartThings capabilities (a set of oper-
ations) that the app wishes to perform, and the set of ca-
pabilities that a device supports. Once an app is granted
access to a device, it can access all of its data and fea-
tures. SmartThings does not offer any data flow control
primitives.
2) Google Fit. Google Fit enables apps to interface with
wearables like smartwatches [32]. The core abstraction
in Google Fit is the Fitness Data Type, which provides a

2We also found an orthogonal virtual sensor design pattern: An in-
termediate app computing on sensor data and re-publishing the derived
data as a separate virtual sensor. For instance, an app reads in heart rate
at beats-per-minute, derives beats-per-hour, and re-publishes this data
as a separate sensor.

534 25th USENIX Security Symposium USENIX Association

device-agnostic abstraction for apps to access them in ei-
ther instantaneous or aggregated form. The API provides
raw access to both data types using only the callback pat-
tern; the polling pattern is not supported. For instance, to
obtain expended calories, an app registers a data point
listener for the com.google.calories.expended in-
stantaneous fitness type. A noteworthy aspect is that apps
using the Fit API can pre-process data and publish sec-
ondary data sources, essentially providing a virtual sen-
sor.

Google Fit API defines scopes that govern access
to fitness data. For instance, the FITNESS BODY READ

scope controls access to heart rate. Apps must request
read or write access to a particular scope, and the user
must approve or deny the request. Once an app gains ac-
cess to a scope, it can access all fitness related data in
that scope. Google Fit does not offer any data flow con-
trol primitives.
3) Android Sensor API. Android provides API access to
three categories of smartphone sensor data: Motion, En-
vironment, and Position. Apps must register a class im-
plementing the SensorEventListener interface to re-
ceive callbacks that provide realtime sensor state. There
is no API to poll sensor state, except for the Location
API. Android treats the Location API differently but, for
our purposes, we consider it to be within the general
umbrella of the sensor API. The Location API supports
both the polling and callback design patterns. The call-
back pattern supports consumers operating in a device-
agnostic manner since the consumer only specifies the
type of data it is interested in.

Surprisingly, the Android sensor API does not provide
any access control mechanism protecting sensor data.
Any app can register a callback and receive sensor data.
The Location API and heart rate sensor API, however,
do use Android permissions [22, 31]. Similar to the pre-
vious two frameworks, Android does not offer any data
flow control primitives.
IoT Architectures. We observe two categories of IoT
software architectures: (1) Hub, and (2) Cloud. The hub
model is centralized and executes the majority of soft-
ware on a hub that exists in proximity to various phys-
ical devices, which connect to it. The hub has signif-
icantly more computational power than individual IoT
devices, has access to a power supply, provides network
connectivity to physical devices, and executes IoT apps.
In contrast, a cloud architecture executes apps in remote
servers and may use a minimal hub that only serves
as a proxy for relaying commands to physical devices.
The hub model is less prone to reliability issues, such
as functionality degradation due to network connectivity
losses that plague cloud architectures [58]. Furthermore,
we observe a general trend toward adoption of the hub
model by industry in systems such as Android Auto [1]

and Wear [2], Samsung SmartThings [55]3, and Logitech
Harmony [3]. Our work targets the popular hub model,
making it widely applicable to these hub-based IoT sys-
tems.
Threat Model. IoT apps are exposed to a slew of sensi-
tive data from sensors, devices connected to the hub, and
other hub-based apps. This opens up the possibility of
sensitive data leaks leading to privacy invasion. For in-
stance, Denning et al. outlined emergent threats to smart
homes, including misuse of sensitive data for extortion
and for blackmail [17]. Fernandes et al. recently demon-
strated that such threats exist in real apps on an existing
IoT platform [26] where they were able to steal and mis-
use door lock pincodes.

We assume that the adversary controls IoT apps run-
ning on a hub whose platform software is trusted. The
adversary can program the apps to attempt to leak sen-
sitive data. Our security goal is to force apps to declare
their intended data use patterns, and then enforce those
flows, while preventing all other flows. This enables the
design of more privacy-respecting apps. For instance, if
an app on FlowFence declares it will sink camera data
to a door lock, then the system will ensure that the app
cannot leak that data to the Internet. We assume that side
channels and covert channels are outside the scope of this
work. We discuss implications of side channels, and pos-
sible defense strategies in §6.

3 Opacified Computation Model

Consider the example smart home app from §1, where it
unlocks the front door based on people’s faces. It uses
the bitmap to extract features, checks the current state of
the door, unlocks the door, and sends a notification to the
home owner using the Internet. This app uses sensitive
camera data, and accesses the Internet for the notification
(in addition to ads and crash reporting). An end user
wishes to reap the benefits of such a scenario but also
wants to ensure that the door control app does not leak
camera data to the Internet.

FlowFence supports such scenarios through the use
of Opacified Computation, which consists of two main
components: (1) Quarantined Modules (“functions”),
and (2) opaque handles. A Quarantined Module (QM) is
a developer-written code module that computes on sen-
sitive data (which is assigned a taint label at the data
source), and runs in a system-provided sandbox. A de-
veloper is free to write many such Quarantined Modules.
Therefore, each app on FlowFence is split into two parts:
(1) some non-sensitive code that does not compute on
sensitive data, and (2) a set of QMs that compute on sen-
sitive data. Developers can chain multiple QMs together

3Recent v2 hubs have local processing.

USENIX Association 25th USENIX Security Symposium 535

to achieve useful work, with the unit of transfer between
QMs being opaque handles—immutable, labeled opaque
references to data that can only be dereferenced by QMs
when running inside a sandbox. QMs and opaque han-
dles are associated with a taint set, i.e., a set of taint la-
bels that indicates the provenance of data and helps track
information flows (we explain label design later in this
section).

An opaque handle does not reveal any information
about the data value, data type, data size, taint set,
or exceptions that may have occurred to non-sensitive
code. Although such opaqueness can make debugging
potentially difficult, our implementation does support a
development-time debugging flag that lifts these opaque-
ness restrictions (§4).

Listings 1 and 2 shows pseudo-code of example smart
home apps. The CamPub app defines QM bmp that pub-
lishes the bitmap data. FlowFence ensures that whenever
a QM returns to the caller, its results are converted to an
opaque handle.

Line 10 of Listing 1 shows the publisher app calling
the QM (a blocking call), supplying the function name
and a taint label. FlowFence allocates a clean sandbox,
and runs the QM. The result of QM bmp running is the
opaque handle hCam, which refers to the return data, and
is associated with the taint label Taint CAMERA. hCam is
immutable—it will always refer to the data that was used
while creating it (immutability helps us reduce overtaint-
ing; we discuss it later in this section). Line 11 shows
CamPub sending the resultant handle to a consumer.

We also have a second publisher of data QM status

that publishes the door state (Line 16 of Listing 1), along
with a door identifier, and provides an IPC function for
consumers to call (Line 20).

The DoorCon app defines QM recog, which expects a
bitmap, and door state (Lines 6-9 of Listing 2). It com-
putes feature vectors from the bitmap, checks if the face
is authorized, checks the door state, and unlocks the door.
Lines 18, 19 of Listing 2 show this consumer app receiv-
ing opaque handles from the publishers. As discussed,
non-sensitive code only sees opaque handles. In this
case, hCam refers to camera-tainted data, and hStatus

refers to door-state-tainted data, but the consumer app
cannot read the data unless it passes the data to a QM.
Moreover, for this same reason, non-sensitive code can-
not test the value of a handle to create an implicit flow.

Line 20 calls a QM, passing the handles as parameters.
FlowFence automatically and transparently dereferences
opaque handle arguments into raw data before invoking a
QM. Transparent dereferencing of opaque handles offers
developers the ability to write QMs normally with stan-
dard types even though some parameters may be passed
as opaque handles. During this process, FlowFence allo-
cates a clean sandbox for the QM to run, and propagates

the taint labels of the opaque handles to that sandbox.
Finally, QM recog receives the raw data and opens the
door.

The consumer app uses QM report to send out the
state of the door to a remote monitoring website. It also
attempts to use QM mal to leak the bitmap data. Flow-
Fence prevents such a leak by enforcing flow policies,
which we discuss next.
Flow Policy. A publisher app, which is associated with
a sensor (or sensors), can add taint labels to its data that
are tuples of the form (appID,name), where appID is
the identifier of the publisher app and name is the name
of the taint label. This name denotes a standardized type
that publishers and consumers can agree upon, for ex-
ample, Taint CAMERA. We require labels to be statically
declared in the app’s manifest. appID is unique to an
app and is used to avoid name collisions across apps.4

Additionally, in its manifest, the publisher can specify
a set of flow rules for each of its taint labels, with the
set of flow rules constituting the publisher policy. The
publisher policy defines the permissible flows that gov-
ern the publisher’s data. A flow rule is of the form
TaintLabel → Sink, where a sink can be a user in-
terface, actuators, Internet, etc. CamPub’s flow policy is
described on Line 3 of Listing 1. The policy states that
consumer apps can sink camera data to the sink labeled
UI (which is a standard label corresponding to a user’s
display at the hub).

Since other possible sinks for camera data are not nec-
essarily known to the publisher, new flow policies are
added as follows. A consumer app must request approval
for flow policies if it wants to access sensitive data. Con-
sumer flow policies can be more restrictive than pub-
lisher policies, supporting the least privilege principle.
They can also request new flows, in which case the hub
user must approve them. DoorCon’s policy requests are
described in Lines 2-4 of Listing 2. It requests the flows:
Taint CAMERA → Door.Open, Taint DOORSTATE →
Door.Open, Taint DOORSTATE → Internet. At app
install time, a consumer app will be bound to a publisher
that provides data sources with labels Taint CAMERA,
Taint DOORSTATE.

To compute the final policy for a given consumer app
FlowFence performs two steps. First, it computes the in-
tersection between the publisher policy and the consumer
policy flow rules. In our example, the intersection is the
null set. If it were not null, FlowFence would authorize
the intersecting flows for the consumer app in question.
Second, it computes the set difference between the con-
sumer policy and publisher policy. This difference re-
flects the flows the consumer has requested but the pub-
lisher policy has not covered. At this point, FlowFence

4An app cannot forge its ID since our implementation uses Android
package name as the ID. See §4 for details.

536 25th USENIX Security Symposium USENIX Association

delegates approval to the IoT hub owner to make the fi-
nal decision about whether to approve the flows or not. If
the hub owner decides to approve a flow that a publisher
policy does not cover, that exception is added for subse-
quent runs of that consumer app. Such a approval does
not apply to other apps that may also use the data.

If a QM were to attempt to declassify the camera data
to the Internet (e.g., QM mal) directly without requesting
a flow policy, the attempt would be denied as none of
the flow policies allow it. An exception is thrown to
the calling QM whenever it tries to perform an unautho-
rized declassification. Similar to exception processing
in languages like Java, if a QM does not catch an ex-
ception, any output handle of this QM is moved into the
exception state. Non-QM code cannot view this excep-
tion state. If an app uses such a handle in a subsequent
QM as a parameter, then that QM will silently fail, with
all of its output handles also in the exception state. App
developers can avoid this by ensuring that a QM handles
all possible exceptions before returning and, if necessary,
encodes any errors into the return object, which can then
be examined in a subsequent QM that receives the re-
turned handle.

FlowFence is in a position to make security decisions
because the publisher assigns taint labels while creating
the handles, and when DoorCon reads in the handles, it
results in the taint labels propagating to the sandbox run-
ning QM mal. FlowFence simply reads the taint labels of
the sandbox at the time of declassification.

All declassification of sensitive data can only occur
through well-known trusted APIs that FlowFence de-
fines. Although our prototype provides a fixed set of
trusted APIs that execute in a separate trusted process,
we envision a plug-in architecture that supports commu-
nity built and vetted APIs (§4). FlowFence sets up sand-
box isolation such that attempts at declassifying data us-
ing non-trusted APIs, such as arbitrary OS system calls,
are denied.

Table 1 summarizes the taint logic. When a clean
sandbox loads a QM, it has no taint. A taint label, be-
longing to the app, may be added to a handle at creation,
or to a sandbox at any time, allowing data providers to la-
bel themselves as needed. A call from QM executing in
S0 to another QM that is launched in sandbox S1 results
in the taint labels of S0 being copied to S1. When a called
QM returns, FlowFence copies the taint of the sandbox
into the automatically created opaque handle. At that
point, the QM no longer exists. The caller is not tainted
by the returned handle, unless the caller (which must be
a QM) dereferences the handle. These taint arithmetic
rules, combined with QMs, opaque handles, and sand-
boxes conceptually correspond to a directed data flow
graph from sources to sinks, as we illustrate with the ex-
ample below.

1 a p p l i c a t i o n CamPub

2 taint_label Taint_CAMERA;

3 a l l o w { Taint_CAMERA -> UI }

4

5 Bitmap QM_bmp ():

6 Bitmap face = camDevice.snapshot ();

7 r e t u r n face;

8

9 i f (motion at FrontDoor)

10 hCam = QM. c a l l (QM_bmp , Taint_CAMERA);

11 send hCam t o DoorCon;

12 ---

13 a p p l i c a t i o n DoorStatePub

14 taint_label Taint_DOORSTATE;

15

16 Status QM_status ():

17 r e t u r n (door [0]. state (), 0); //state ,idx

18

19 /* IPC */ Handle getDoorState ():

20 r e t u r n QM. c a l l (QM_status ,
Taint_DOORSTATE);

Listing 1: Pseudocode for two publishers—camera data,
and door state. Quarantined Modules are shown in light
gray.

1 a p p l i c a t i o n DoorCon

2 r e q u e s t { Taint_CAMERA -> Door.Open ,

3 Taint_DOORSTATE -> Door.Open ,

4 Taint_DOORSTATE -> Internet }

5

6 v o i d QM_recog(faceBmp , status):

7 Features f = extractFeatures(faceBmp);

8 i f (status != unlocked AND isAuth(f))

9 TrustedAPI.door [0]. open();

10

11 v o i d QM_report(status):

12 TrustedAPI.network. send (status);

13

14 v o i d QM_mal(faceBmp):

15 /* this is denied */

16 TrustedAPI.network. send (faceBmp);

17

18 r e c e i v e hCam from CamPub;

19 Handle hStatus =

DoorStatePub.getDoorState ();

20 QM. c a l l (QM_recog , hCam , hStatus);

21 QM. c a l l (QM_mal , hCam);

22 QM. c a l l (QM_report , hStatus);

Listing 2: Consumer app pseudocode that reads camera
and door state data, and controls a door. Quarantined
Modules are shown in light gray.

FlowFence Data Flow Graph. We now discuss the taint
flow logic of FlowFence in more detail, and show how it
creates and tracks, at runtime, a directed data flow graph
that enables it to make security decisions on flows. Fig-
ure 1 shows two publishers of sensitive data that gener-
ate OHT1(d1)—an opaque handle that refers to camera
bitmap data d1, and OHT2(d2)—an opaque handle that
refers to door state data d2, using QMbmp and QMstatus

USENIX Association 25th USENIX Security Symposium 537

Operation Taint Action
Sandbox S loads a QM T [S] :=∅

QM inside S reads opaque handle d =
OH−1(h)

T [S] += T [h]

QM inside S returns h = OH(d) T [h] := T [S]

QM manually adds taints {t} to its sandbox T [S] += {t}

QM0 inside S0 calls QM1 inside S1 T [S1] = T [S0]

Table 1: Taint Arithmetic in FlowFence. T [S] denotes
taint labels of a sandbox running a QM. T [h] denotes
taint label of a handle h.

Camera Door
Status

T1

QMbmp

Sandbox T2

QMstatus

Sandbox

DoorStatePubCamPub

DoorCon

QMmal

Sandbox
QMrecog

Sandbox

Trusted API

DoorLock

OHT1(d1) OHT2(d2)

(d1,T1) (d2,T2)

OHT1(d1) OHT2(d2)

OHT1(d1)

G(d1) , {T1} F(d1,d2) , {T1 U T2}

F(d1,d2)Policy Violation

OHT1(d1),OHT2(d2)

T1 U T2T1

Internet

QMreport

Sandbox

H(d2) , {T2}

T2

OHT2(d2)

Internet

H(d2)

Figure 1: Data flow graph for our face recognition ex-
ample. FlowFence tracks taint labels as they propagate
from sources, to handles, to QMs, to sinks. The dot-
ted lines represent a declassification attempt. The trusted
API uses labels on the sandboxes to match a flow policy.

respectively. T1 and T2 are taint labels for data d1 and d2.
The user wants to ensure that camera data does not flow
to the internet.

The consumer app (DoorCon) consists of non-
sensitive code that reads the above opaque handles from
the publishers, and invokes three QMs. QMrecog operates
on both OHT1(d1) and OHT2(d2). When the non-sensitive
code requests execution of QMrecog, FlowFence will al-
locate a clean sandbox, dereference the handles into raw
values, and invoke the module. The sandbox inherits
the taint label T1 ∪ T2. Later on, when QMrecog tries to
declassify its results by invoking the trusted API, Flow-
Fence will read the taint labels (dotted line in Figure 1)—
T1 ∪T2. That is, FlowFence taint arithmetic defines that
the taint label of the result is the combination of input

data taint labels. In our example, declassifying camera
and door state tainted data to the door lock is permitted,
since the user authorized the flow earlier.

If the consumer app tries to declassify sensitive data d1
by invoking a trusted API using QMmal , the API reads the
taint labels on the handle being declassified, determines
that there is no policy that allows d1 → Internet, and
denies the declassification.

Immutable opaque handles are key to realizing this di-
rected data flow graph. Consider Figure 1. If handles
were mutable, and if QMmal read in some data with taint
label T3, then we would have to assume that OHT1(d1) is
tainted with T3, leading to overtainting. Later on, when
QMrecog executes, its sandbox would inherit the taint la-
bel T3 due to the overtainting. If there was a policy that
prevented T3 from flowing to the door lock, FlowFence
would prevent QMrecog from executing the declassifica-
tion. FlowFence avoids these overtainting issues by hav-
ing immutable handles, which enable better precision
when reasoning about flows. There are other sources
of overtainting related to how a programmer structures
the computation and IoT-specific mechanisms that Flow-
Fence introduces. We discuss their implications and how
to manage them in §4 and §6.

As discussed above, taint flows transitively from data
sources, to opaque handles, to sandboxes, back to opaque
handles, and eventually to sinks via the trusted API,
where FlowFence can enforce security policies. This
design allows taint flow to be observed in a black-box
manner, simply by tracking the inputs and outputs. This
allows QMs to internally use any language, without the
overhead of native taint tracking, only by using sandbox
processes to enforce isolation as described in §4.

FlowFence Security Guarantees. FlowFence uses its
taint arithmetic rules to maintain the invariant that the
taint set of a QM executing in a sandbox at any time rep-
resents the union of the taints of sensitive data used by
the QM through opaque handles or through calls from
another QM. Furthermore, FlowFence avoids propagat-
ing taint on QM returns with the help of opaque han-
dles. Since these handles are opaque outside a QM, non-
sensitive code must pass them into QMs to dereference
them, allowing FlowFence to track taints. If the non-
sensitive code of a consumer app transmits an opaque
handle to another app via an OS-provided IPC mecha-
nism, FlowFence still tracks that flow since the receiving
app also has to use a QM to make use of the handle.

To prevent flow policy violations, a sandbox must be
designed such that writes from a QM to a sink go through
a trusted API that enforces specified flow policies. We
discuss how we achieve this sandbox design in §4.

538 25th USENIX Security Symposium USENIX Association

4 FlowFence Architecture

FlowFence supports executing untrusted IoT apps using
two major components (Figure 2): (1) A series of sand-
boxes that execute untrusted, app-provided QMs in an
isolated environment that prevents unwanted communi-
cation, and (2) A Trusted Service that maintains handles
and the data they represent; converting data to opaque
handles and dereferencing opaque handles back; mediat-
ing data flow between sources, QMs, and sinks, includ-
ing taint propagation and policy enforcement; and cre-
ating, destroying, scheduling, and managing lifetime of
sandboxes.

We discuss the design of these components in the con-
text of an IoT hub with Android OS running on top. We
selected Android because of the availability of source
code. Google’s recently announced IoT-specific OS—
Brillo [29], is also an Android variant.5 Furthermore,
with the introduction of Google Weave [30], we expect
to see Android apps adding IoT capabilities in the future.
Untrusted IoT Apps & QMs. Developers write apps for
FlowFence in Java and can optionally load native code
into QMs. As shown in Figure 2, each app consists of
code that does not use sensitive data inputs, and a set of
QMs that use sensitive data inputs. Although abstractly,
QMs are functions, we designed them as methods oper-
ating on serializable objects. Each method takes some
number of parameters, each of which can either be (1)
raw, serialized data, or (2) opaque handles returned from
previous method calls on this or another QM. A devel-
oper can write a method to return raw data, but returning
raw data would allow leakage. Thus, FlowFence con-
verts that raw data to an opaque handle prior to returning
to the untrusted app.6

Trusted Service & APIs. This service manages all sen-
sitive data flowing to and from QMs that are executing
in sandboxes. It schedules QMs for execution inside
sandboxes, dereferencing any opaque handle parameters,
and assigning the appropriate taint labels to the sand-
boxes. The Trusted Service also ensures that a sand-
box is correctly tainted whenever a QM reads in sensi-
tive data (Tainter component of Figure 2), as per the taint
arithmetic rules in FlowFence (Table 1). Once it taints a
sandbox, the Trusted Service maintains the current taint
labels securely in its process memory.

FlowFence does not track or update taints for variables
inside a QM. Instead, it treats a QM as a blackbox for the

5Brillo OS is only a limited release at the time of writing. Therefore,
we selected the more mature codebase for design, since core services
are the same on Android and Brillo.

6A QM can theoretically leak sensitive data through side channels
(e.g., by varying the execution time of the method prior to returning).
We assume side channels to be out of scope of our system and thus we
do not address them in our current threat model. If such leaks were to
be a concern, we discuss potential defense strategies in §6.

Consumer
QM 1

Other codes

Resources
QM 2

QM 1

Sandbox 1

Ta
in

te
r

QM 2

Sandbox 2

Trusted API

Trusted Service

Opaque Handle Table

Publisher

Publisher
QMOther codes

Publisher QM

Sandbox 3

Ta
in

te
r

Tainted Data

Opaque Handle

Policy

… … …

TaintDataHandle

… ……

TaintValueKey

Key-Value Store

Ta
in

te
r

Figure 2: FlowFence Architecture. Developers split
apps into Quarantined Modules, that run in sandbox pro-
cesses. Data leaving a sandbox is converted to an opaque
handle tainted with the sandbox taint set.

purpose of taint analysis and it only needs to examine
sensitive inputs being accessed or handles provided to
a method as inputs. We expect QMs to be limited to the
subset of code that actually processes sensitive data, with
non-sensitive code running without change. Although
this does reduce performance overhead and avoids im-
plicit flow leaks by forcing apps to only use controlled
and well-defined data transfer mechanisms, it does re-
quire programmers to properly split their app into least-
privilege QMs, which if done incorrectly, could lead to
overtainting.

When a QM Q running inside a sandbox S returns,
the Trusted Service creates a new opaque handle h cor-
responding to the return data d, and then creates an entry
< h,< d,T [S]>> in its opaque handle Table (Figure 2),
and returns h to the caller.

The Trusted Service provides APIs for QMs allow-
ing them to access various sinks. Our current proto-
type has well-known APIs for access to network, ZWave
switches, ZWave locks, camera streams, camera pictures,
and location. As an example of bridging FlowFence with
such cyber-physical devices, we built an API for Sam-
sung SmartThings. This API makes remote calls to a
web services SmartThings app that proxies device com-
mands from FlowFence to devices like ZWave locks. The
Trusted API also serves as a policy enforcement point,
and makes decisions whether to allow or deny flows
based on the specific policy set for the consumer app.

We envision a plug-in architecture that enables
community-built and vetted Trusted APIs to integrate
with our framework. The plugin API should ideally be
in a separate address space. The Trusted Service will
send already declassified data to this plugin API via se-
cure IPC. This limits risk by separating the handle table
from external code.

USENIX Association 25th USENIX Security Symposium 539

Sandboxes. The Trusted Service uses operating sys-
tem support to create sandbox processes that FlowFence
uses to execute QMs. When a QM arrives for execution,
FlowFence reserves a sandbox for exclusive use by that
QM, until execution completes. Once a QM finishes ex-
ecuting, FlowFence sanitizes sandboxes to prevent data
leaks. It does this by destroying and recreating the pro-
cess.

For efficiency reasons, the Trusted Service maintains
a pool of clean spare sandboxes, and will sanitize idle
sandboxes in the background to keep that pool full. In ad-
dition, the Trusted Service can reassign sandboxes with-
out needing to sanitize them, if the starting taint (based
on the input parameters) of the new QM is a superset of
or equal to the ending taint of the previous occupant of
that sandbox. This is true in many common cases, in-
cluding passing the return value of one QM directly into
another QM. In practice, sandbox restarts only happen
on a small minority of calls.

FlowFence creates the sandboxes with the
isolatedProcess flag set, which causes Android
to activate a combination of restrictive user IDs, IPC
limitations, and strict SELinux policies. These re-
strictions have the net effect of preventing the isolated
process from communicating with the outside world,
except via an IPC interface connected to the Trusted
Service.

As shown in Figure 2, this IPC interface belongs to the
Trusted API discussed earlier. When the sandboxes com-
municate with the Trusted Service over an IPC interface,
the IPC request is matched to the sandbox it originated
from as well as to the QM that initiated the call. As dis-
cussed, the Trusted Service maintains information about
each sandbox, including its taint labels and running QM,
in a lookup table in its own memory, safely out of reach
of, possibly malicious, QMs.
Debugging. Code outside QMs cannot dereference
opaque handles to inspect corresponding data or excep-
tions, complicating debugging during development. To
alleviate this, FlowFence supports a development time
debugging option that allows code outside a QM to deref-
erence handles and inspect their data and any exception
traces. However, a deployment of FlowFence has this
debugging flag removed. Also, as discussed previously,
use of a opaque handle in exception state as a parameter
to a QM results in the QM returning a new opaque han-
dle that is also in the exception state. Providing a mecha-
nism for exception handling in the called QM without in-
creasing programmer burden is challenging and a work-
in-progress. Currently, we use the idiom of a QM han-
dling all exceptions it can and encoding any error as part
of the returned value. This allows any subsequent QM
that is called with the handle as a parameter to examine
the value and handle the error.

Key-Value Store. This is one of the primary data-
sharing mechanisms in FlowFence between publishers
of tainted sensitive data and consumer apps that use the
data. This design was inspired by our framework study
in §2, and it supports publishers and consumers operating
in a device-agnostic manner, with consumers only having
to know the type of data (taint label) they are interested
in processing. Each app receives its own KV store (Fig-
ure 2) into which it can update the value associated with
a key by storing a < key,sensitive value, taint label >
while executing a QM. For instance, a camera im-
age publisher may create a key such as CAM BITMAP,
with an image byte array as the value, and a taint
label Taint CAMERA to denote the type of published
data (declared in the app manifest). A key is public
information—non-sensitive code outside a QM must cre-
ate a key before it can write a corresponding value. This
ensures that a publisher cannot use creation of keys as
a signaling mechanism. An app on FlowFence can only
write to its own KV store. Taints propagate as usual when
a consumer app keys from the KV store. Finally, the pub-
lishing QM associated with a sensor usually would not
read other sensitive information sources, and thus would
not have any additional taint. In the case this QM has
read other sources of information, then the existing taint
is applied to any published data automatically.

If a QM reads a key’s value, the value’s taint label will
be added to that QM’s sandbox. All key accesses are
pass-by-value, and any subsequent change in a value’s
taint label does not affect the taint labels of QMs that
accessed that value in prior executions. Consider an ex-
ample value V with taint label T1. Assuming a QM Q1
accessed this value, it would inherit the taint. Later on,
if the publisher changes the taint label of V to T1 ∪ T2,
this would not affect the taint label of Q1, until it reads V
again.

The polling design pattern is easy to implement using
a Key-Value Store. A consumer app’s QM can periodi-
cally access the value of a given key until it finds a new
value or a non-null value. Publicly accessible keys sim-
plify making sensitive data available to third-party apps,
subject to flow policies.
Event Channels. This is the second data-sharing mecha-
nism in FlowFence; it supports the design pattern of reg-
istering callbacks for IoT device state changes (e.g., new
data being available). The channel mechanism supports
all primitive and serializable data types. An app creates
channels statically by declaring them in a manifest file
at development time (non-sensitive code outside QMs
could also create it), making it the owner for all declared
channels. Once an app is installed, its channels are avail-
able for use—there are no operations to explicitly open
or close channels. Other app’s QMs can then register
to such channels for updates. When a channel-owner’s

540 25th USENIX Security Symposium USENIX Association

QM puts data on the channel, FlowFence invokes all reg-
istered QMs with that data as a parameter. FlowFence
automatically assigns the current set of taint labels of the
channel-owner to any data it puts on the channel, so that
all QMs that receive the callback will be automatically
tainted correctly. If a QM is executed as a callback for
a channel update, it does not return any data to the non-
sensitive code of the app.

Although the publishers and consumers can share
opaque handles using OS-provided sharing mechanisms,
we designed the Key-Value store, and Event channels ex-
plicitly so that publishers and consumers can operate in
a device-agnostic manner by specifying the types of data
they are interested in, ignoring lower level details.

As described here, both inter-app communication
mechanisms, the KV store and event channels, can po-
tentially lead to poison-pill attacks [37] where a compro-
mised or malicious publisher adds arbitrary taint labels,
with the goal of overtainting consumers and preventing
them from writing to sinks. See the discussion of over-
tainting in §6 for a defense strategy.
FlowFence Policies and User Experience. In our proto-
type, users install the app binary package with associated
policies. FlowFence prompts users to approve consumer
flow policies that are not covered by publisher policies at
install time. This install-time prompting behavior is sim-
ilar to the existing Android model. FlowFence models its
flow request UI after the existing Android runtime per-
mission request screens, in an effort to remain close to
existing permission-granting paradigms and to leverage
existing user training with permission screens. However,
unlike Android, FlowFence users are requested to autho-
rize flows rather than permissions, ensuring their control
over how apps use data. If a user approves a set of flows,
FlowFence guarantees that only those flows can occur.

Past work has shown that users often do not compre-
hend or ignore prompts [25], however, existing research
does point out interesting directions for future work in
improving such systems. Felt et al. discuss techniques to
better design prompting mechanisms [23], and Roesner
et al. discuss contextual prompting [50, 51] as possible
improvements.

5 Evaluation

We evaluated FlowFence from multiple perspectives.
First, we ran a series of microbenchmarks to study call
latency, serialization overhead, and memory overhead
of FlowFence. We found that FlowFence adds mod-
est computational and memory costs. Running a sand-
box takes 2.7MB RAM on average, and running multiple
such sandboxes will fit easily within current hardware

for IoT hubs.7 We observed a 92ms QM call latency
with 4 spare sandboxes, which is comparable to the la-
tency of common network calls in IoT apps. FlowFence
supports a maximum bandwidth of 31.5MB/s for trans-
ferring data into sandboxes, which is large enough to ac-
commodate typical IoT apps. Second, we ported three
IoT apps to FlowFence to examine developer effort, se-
curity, and impact of FlowFence on macro-performance
factors. Our results show that developers can use Flow-
Fence with modest changes to their apps and with ac-
ceptable performance impact, making FlowFence practi-
cal for building secure IoT apps. Porting the three apps
required adding 99 lines of code on average per app. We
observed a 4.9% latency increase to perform face recog-
nition in a door controller app. More details follow.

5.1 Microbenchmarks
We performed our microbenchmarks on an LG Nexus 4
running FlowFence on Android 5.0. The Nexus 4 serves
as our “IoT hub” that runs QMs and enforces flow poli-
cies. In our experiments, we evaluated three factors that
can affect apps running on FlowFence.
Memory overhead. We evaluated memory overhead of
FlowFence using the MemoryInfo API. We ran Flow-
Fence with 0 − 15 empty sandboxes and recorded the
memory consumption. Our results show that the Flow-
Fence core requires 6.35MB of memory while each sand-
box requires 2.7MB of memory on average. To put this
in perspective, LG Nexus 4 has 2GB memory and load-
ing a blank page on the Chrome browser on it used 98MB
of memory, while loading FlowFence with 16 sandboxes
used 49.5MB. Therefore, we argue that the memory
overhead of FlowFence is within acceptable limits for the
platform.
QM Call Latency. We measured QM call latency for
non-tainted and tainted parameters (30 trials each with
100 QM call-reply sequences) to assess performance in
scenarios that allowed reuse of a sandbox without san-
itizing and those that required sanitizing. For tainted
calls, each QM takes a single boolean parameter that is
tainted. We also varied the number of clean spare sand-
boxes that are available for immediate QM scheduling
initially before each trial. Regardless of the number of
spare sandboxes, untainted calls (which did not taint the
sandboxes and thus could reuse them without sanitiz-
ing) showed a consistent latency of 2.1ms (SD=0.4ms).
The tainted calls were made so as to always require
a previously-tainted sandbox to be sanitized. Figure 3
shows average latency of tainted calls across 30 trials for
different number of spare sandboxes. As the number of
spare sandboxes increases from 0 to 4, the average call

7For example, Samsung SmartThings hub has 512MB RAM [56],
and Apple TV hub has 1GB RAM [7].

USENIX Association 25th USENIX Security Symposium 541

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

A
v
er

ag
e

C
al

l
L

at
en

cy
 (

m
s)

Number of Spare Sandboxes

Figure 3: QM Call latency of FlowFence given vari-
ous number of spare sandboxes, for calls that require
previously-used sandboxes to be sanitized before a call.
Calls that can reuse sandboxes without sanitizing (un-
tainted calls in our tests) show a consistent latency of
2.1ms, which is not shown in this graph.

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
0

2
5

2
10

2
15

2
20

2
25

2
30

B
an

d
w

id
th

 (
B

y
te

/S
)

Data Size (Byte)

Figure 4: Serialization bandwidth for different data sizes.
Bandwidth caps off at 31.5MB/s.

latency decreases from 328ms to 92ms. Further increase
in the number of spare sandboxes does not improve la-
tency of QM calls. At 4 spares, the call latency is less
than 100ms, making it comparable to latencies seen in
controlling many IoT devices (e.g., Nest, SmartThings
locks) over a wide-area network. This makes QMs espe-
cially suitable to run existing IoT apps that already accept
latencies in this range.
Serialization Overhead. To understand FlowFence
overhead for non-trivial data types, we computed seri-
alization bandwidth for calls on QMs that cross sand-
box boundaries with varying parameter sizes. Figure 4
presents the results for data ranging from 4B to 16MB.
The bandwidth increases as data size increases and caps
off at 31.5MB/s. This is large enough to support typical
IoT apps—for example, the Nest camera uses a maxi-
mum bandwidth of 1.2Mbps under high activity [33]. A
single camera frame used by one of our ported apps (see
below), is 37kB, requiring transferring data at 820kB/s
to a QM.

5.2 Ported IoT Applications

We ported three existing IoT apps to FlowFence to mea-
sure its impact on security, developer effort, end-to-end
latency, and throughput on operations relevant to the
apps (Table 2). SmartLights is a common smart home
app (e.g., available in SmartThings) that computes a
predicate based on a location value from a beacon such
as a smartphone, or car [47]. If the location value inside
the home’s geofence, the app turns on lights (and adjusts
other devices like thermostats) around the home. When
the location value is outside the home’s geofence, the app
takes the reverse action.

FaceDoor performs face recognition and unlocks a
door, if a detected face is authorized [34]. The app uses
the camera to take an image of a person at the door,
and runs the Qualcomm face recognition SDK (chipset-
specific native code, available only as a binary).

HeartRateMonitor accesses a camera to compute heart
rate using photoplethysmography [67]. The app uses im-
age processing code on streamed camera frames.

FlowFence provides trusted API to access switches,
locks, and camera frames. These three existing apps
cover the popular IoT areas of smart homes and quan-
tified self. Furthermore, face recognition and camera-
frame-streaming apps are among the more computation-
ally expensive types of IoT apps, and stress test Flow-
Fence performance. We ran all our experiments on An-
droid 5.0 (Nexus 4).
Security. We discuss data security risks that each of the
three IoT apps pose when run on existing platforms, and
find that FlowFence eliminates those risks successfully
under leakage tests.
1) SmartLights: It has the potential to leak location infor-
mation to attackers via the Internet. The app has Internet
access for ads, and crash reporting. On FlowFence, the
developer separates code that computes on location in a
QM which isolates the flow: loc → switch, while al-
lowing other code to use the Internet freely.
2) FaceDoor: This app can leak camera data to the In-
ternet. We note that this app requires Internet access
for core functionality—it sends a notification to the user
whenever the door state changes. Therefore, under cur-
rent IoT frameworks it is very easy for this app to leak
camera data. FlowFence isolates the flow of camera
and door state data to door locks from the flow of door
state data to the Internet using two QMs, eliminating
any possibility of cross-flows between the camera and
the Internet. This app uses the flows: cam → lock,
doorstate→ lock, doorstate→ Internet.
3) HeartRateMonitor: The app can leak images of peo-
ple, plus heart rate information derived from the camera
stream. However, similar to previous apps, the developer
of this app too will use FlowFence support to isolate the

542 25th USENIX Security Symposium USENIX Association

Name Description Data Security Risk
without FlowFence

LoC
original

LoC
FlowFence Flow Request

SmartLights [47]

Reads a location beacon
and if the beacon is inside a
geofence around the home,
automatically turn on the
lights

App can leak user
location information

118 193 loc→ switch

FaceDoor [34]

Uses a camera to recognize
a face; If the face is
authorized, unlock a
doorlock

App can leak images of
people

322 456
cam→ lock,

doorstate→ lock,
doorstate→ net

HeartRateMonitor [67]
Uses a camera to measure
heart rate and display on UI

App can leak images of
people, and heart rate
information

257 346 cam→ ui

Table 2: Features of the three IoT apps ported to FlowFence. Implementing FlowFence adds 99 lines of code on
average to each app (less than 140 lines per app).

flow: cam→ ui into a QM. We note that in all apps, the
QMs can return opaque handles to the pieces of code not
dealing with sensitive information, where the handle can
be leaked, but this is of no value to the attacker since a
handle is not sensitive data.
Developer Effort. Porting apps to FlowFence requires
converting pieces of code operating on sensitive data
to QMs. On average, 99 lines of code were added to
each app (Table 2). We note that typical IoT apps today
are relatively small in size compared to, say, Android
apps. The average size across 499 apps for which we
have source code for SmartThings platform is 162 line of
source code. Most are event-driven, receiving data from
various publishers that they are authorized to at install
time and then publish to various sinks, including devices
or Internet. Much of the extra code deals with resolving
the appropriate QMs, and creating services to communi-
cate with FlowFence. It took a developer with no prior
knowledge of the FlowFence API to port the first two
apps in two 8-hour (approx.) days each, and the last app
in a single day. We envision that with appropriate devel-
oper tool support, many boiler plate tasks, including QM
resolution, can be automated. We note that the increase
in LoC is not co-related to the original LoC of the app.
Instead, there is an increase in LoC only for pieces of the
original app that deals with sensitive data. Furthermore,
it is our experience that refactoring an existing app re-
quires copying logic as-is, and building QMs around it.
For instance, we did not have source-code access to the
Qualcomm Face Recognition SDK, but we were able to
successfully port the app to FlowFence.
Porting FaceDoor. Here, we give an example of the
steps involved in porting an app. First, we removed
all code from the app related to camera access, because
FlowFence provides a camera API that allows QMs to

take pictures, and access the corresponding bitmaps.
Next, we split out face recognition operations into its
own Quarantined Module—QMrecog, that loads the na-
tive code face recognition SDK. We modified QMrecog
to use the Trusted API to access a camera image, an
operation that causes it to be tainted with camera data.
We modified the pieces of code related to manipulating
a ZWave lock to instead use FlowFence-provided API
for accessing door locks. We also created QMreport that
reads the door state source and then sends a notification
to the user using the Internet. These two QMs isolate
the flow from camera and door state to door lock, and
the flow from door state to the Internet, effectively pre-
venting any privacy violating flow of camera data to the
Internet, which would otherwise be possible with current
IoT frameworks.
End-to-End Latency. We quantified the impact of Flow-
Fence on latency for various operations in the apps that
are crucial to their functionality. We measured latency as
the time it takes for an app to perform one entire com-
putational cycle. In the case of SmartLights, one cycle
is the time when the beacon reports a location value,
till the time the app issues an operation to manipulate
a switch. We observed a latency of 160ms (SD=69.9)
for SmartLights in the baseline case, and a latency of
270ms (SD=96.1) in the FlowFence case. The reason
for increased latency is due to QM load time, and cross-
process transfers of the location predicate value.

FaceDoor has two operations where latency matters.
First, the enroll latency is the time it takes the app to ex-
tract features from a provided bitmap of a person’s face.
Second, recognition latency is the time it takes the app to
match a given bitmap of a person’s face to an item in the
app’s database of features. We used images of our team
members (6), measuring 612x816 pixels with an average

USENIX Association 25th USENIX Security Symposium 543

 0

 200

 400

 600

 800

 1000

0 1 2 3 4 5

Re
co

g.
 L

at
en

cy
 (m

s)

Recog. DB Size (num. of images)

Baseline FlowFence

Figure 5: FaceDoor Recognition Latency (ms) on vary-
ing DB sizes for Baseline and FlowFence. Using Flow-
Fence causes 5% increase in average latency.

HeartRateMonitor Metric (fps) Baseline
Avg
(SD)

FlowFence
Avg
(SD)

Throughput with no Image Processing 23.0
(0.7)

22.9
(0.7)

Throughput with Image Processing 22.9
(0.7)

22.7
(0.7)

Table 3: Throughput for HeartRateMonitor on Baseline
(Stock Android) and FlowFence. FlowFence imposes lit-
tle overhead on the app.

size of 290.3kB (SD=15.2).
We observed an enroll latency of 811ms (SD=37.1) in

the baseline case, and 937ms (SD=60.4) for FlowFence,
averaged over 50 trials. The increase in latency (15.5%)
is due to QM load time, and marshaling costs for trans-
ferring bitmaps over process boundaries. While the in-
crease in latency is well within bounds of network varia-
tions, and undetectable by user in both previous cases; it
is important to recognize that most of this increase is re-
sulted from setup time and the effect on actual processing
time is much more modest. Figure 5 shows latency for
face recognition, averaged over 10 trials, for Baseline,
and FlowFence. We varied the recognition database size
from 1 to 5 images. In each test, the last image enrolled
in the database is a specific person’s face that we desig-
nated as the test face. While invoking the recognition op-
eration, we used another image of the same test person’s
face. We observe a modest, and expected increase in la-
tency when FaceDoor runs on FlowFence. For instance,
it took 882ms to successfully recognize a face in a DB of
5 images and unlock the door on FlowFence, compared
to 841ms on baseline—a 4.9% increase. This latency is
smaller than 100ms and thus small enough to not cause
user-noticeable delays in unlocking a door once a face is
recognized [13].
Throughput. Table 3 summarizes the throughput in

frames per second (fps) for HeartRateMonitor. We ob-
served a throughput of 23.0 f ps on Stock Android for
an app that read frames at maximum rate from a camera
over a period of 120 seconds. We repeated the same ex-
periment with the image processing load of heart rate de-
tection, and observed no change in throughput. These re-
sults matched our expectations, given that the additional
serialization and call latency is too low to impact the
throughput of reading from the camera (camera was the
bottleneck). Thus, we observed no change in the app’s
abilities to derive heart rate.

6 Discussion and Limitations

Overtainting. Overtainting is difficult to avoid in taint
propagation systems. FlowFence limits overtainting in
two ways: (1) by not propagating taint labels from a QM
to its caller—an opaque handle returned as a result of a
call to a QM has an associated taint but does not cause
the caller to become tainted (unless the caller is a QM
that dereferences the handle), limiting the taints to QMs;
and (2) a QM (and associated sandbox) is ephemeral.
Since FlowFence sanitizes sandboxes if a new occupant’s
taints differ from the previous occupant, reusing sand-
boxes does not cause overtainting. Nevertheless, Flow-
Fence does not prevent overtainting due to poor applica-
tion decomposition into QMs.

A malicious publisher can potentially overtaint a con-
sumer by publishing overtainted data that the consumer
subscribes to, leading to poison-pill attacks [37]. A plau-
sible defense strategy is to allow a consumer to inspect
an item’s taint and not proceed with a read if the item is
overtainted [63]. However, this risks introducing a sig-
naling mechanism from a high producer to a low con-
sumer via changes to the item’s taint set. To address
the attack in the context of our system. We first observe
that most publishers will publish their sensor data un-
der a known, fixed taint. The key idea is to simply re-
quire publishers to define a taint bound T Mc, whenever
a channel c is created.8 If the publisher writes data with
a taint set T that is not a subset of T Mc to the channel c,
the write operation is denied and results in an exception;
else the write is allowed. The consumer, to avoid get-
ting overtainted, can inspect this channel’s taint bound
(but not the item’s taint) before deciding to read an item
from the channel. The taint bound cannot be modified,
once defined, avoiding the signaling problem. A simi-
lar defense mechanism was proposed in label-based IFC
systems [63, 62].
Applicability of Opacified Computation to other do-
mains. In this work we only discussed Opacified Com-

8Same idea applies when creating keys, with a taint bound defined
at that time for any future value associated with the key.

544 25th USENIX Security Symposium USENIX Association

putation in the context of IoT frameworks (e.g., Flow-
Fence Key-Value Store and Event Channels are inspired
by our IoT framework study). The basic Opacified Com-
putation model is broadly applicable. For example, there
is nothing fundamental preventing our hub from being
a mobile smartphone and the app running on it being a
mobile app. But, applying FlowFence to existing mo-
bile apps is challenging because of the need to refactor
apps and the libraries they use (many of the libraries ac-
cess sensitive data as well as sinks). As another design
point, there is no fundamental limitation that requires
IoT hub software to run in a user’s home; it could well
be cloud-hosted and provided as a trusted cloud-based
service for supporting computations on sensitive data.
Use of a cloud-based service for executing apps is not
unusual—SmartThings runs all apps on its cloud, using
a hub to primarily serve as a gateway for connecting de-
vices to the cloud-based apps.
Usability of Flow Prompts. FlowFence suffers from
the same limitation as all systems where users need to
make security decisions, in that we cannot prevent users
from approving flows that they should not. FlowFence
does offer additional information during prompts since it
presents flow requests with sources and sinks indicating
how the app intends to use data, possibly leading to more
informed decision-making. Flow prompts to request
user permissions could be avoided if publisher policies
always overrode consumer policies, with no user over-
ride allowed. But that just shifts the burden to specifying
publisher policies correctly, which still may require user
involvement. User education on flow policies and further
user studies are likely going to be required to examine
usability of flow prompts. In some IoT environments,
the right to configure policies or grant overrides could be
assigned to specially-trained administrators who manage
flow policies on behalf of users and install apps and de-
vices for them.
Measuring flows. Almuhimedi et al. performed a user
study that suggests that providing metrics on frequency
of use of a previously granted permission can nudge
users to patch their privacy policy [6]. For example, if
a user is told that an app read their location 5,398 times
over a day, they may be more inclined to prevent that app
from getting full access to the location. Adding support
for measuring flows (both permitted and denied) to assist
users in evaluating past flow permissions is part of future
work.
Side Channels. A limitation of our current design is that
attackers can encode sensitive data values in the time it
takes for QMs to return. Such side channel techniques
are primarily applicable to leaking low-bandwidth data.
Nevertheless, we are investigating techniques to restrict
this particular channel by making QMs return immedi-
ately, and have them execute asynchronously, thus elim-

inating the availability of fine-grain timing information
in the opaque handles (as in LIO [61]). This would in-
volve creating opaque handle dependency graphs that de-
termine how to schedule QMs for later execution. Fur-
thermore, timing channel leakages can be bounded using
predictive techniques [72].

7 Related Work

IoT Security. Current research focuses around analyz-
ing the security of devices [35, 27], protocols [44, 11],
or platforms [26, 12]. For example, Fernandes et al.
showed how malicious apps can steal pincodes [26]. Cur-
rent IoT frameworks only offer access control but not
data-flow control primitives (§2). In contrast, our work
introduces, to the best of our knowledge, the first security
model targeted at controlling data flows in IoT apps.
Permission Models. We observe that IoT framework
permissions are modeled after smartphone permissions.
There has been a large research effort at analyzing, and
improving access control in smartphone frameworks [20,
49, 22, 24, 51, 50, 10, 16, 43, 68]. For instance, Enck et
al. introduced the idea that dangerous permission combi-
nations are indicative of possibly malicious activity [20].
Roesner et al. introduced User-Driven Access control
where apps prompt for permissions only when they need
it [51, 50]. However, permissions are fundamentally only
gate-keepers. The PlaceRaider sensory malware abuses
granted permissions and uses smartphone sensors (e.g.,
camera) to reconstruct the 3D environment of the user for
reconnaissance [64]. This malware exploits the inability
of permission systems to control data usage once access
in granted. The IoT fundamentally has a lot more sensi-
tive data than a single smartphone camera, motivating the
need for a security model that is capable of strictly con-
trolling data use once apps obtain access. PiBox does
offer privacy guarantees using differential-privacy algo-
rithms after apps gain permissions, but it is primarily
applicable to apps that gather aggregate statistics [43].
In contrast, FlowFence controls data flows between arbi-
trary types of publishers and consumers.
Label-based Information Flow Control. FlowFence
builds on substantial prior work on information flow con-
trol that use labeling architectures [52, 42, 18, 71, 63,
28, 62, 41, 15, 38, 46]. For example, Flume [42] en-
forces flow control at the level of processes while re-
taining existing OS abstractions, Hails [28] presents a
web framework that uses MAC to confine untrusted web
apps, and COWL [63] introduces labeled compartments
for JavaScript code in web apps. Although FlowFence
is closely related to such systems, it also makes design
choices tailored to meet the needs specific to the IoT do-
main. In terms of similarities, FlowFence shares the de-
sign principles of making information flow explicit, con-

USENIX Association 25th USENIX Security Symposium 545

trolling information flow at a higher granularity than the
instruction-level, and supporting declassification. How-
ever, these systems only support producer (source) de-
fined policies whereas FlowFence supports policies de-
fined by both producing and consuming apps. This fea-
ture allows for more versatility in environments such as
IoT, where a variety of consuming apps could request for
a diverse set of flows. Our evaluation shows hows such a
mix of flow policies supports real IoT apps (§5.2).
Computation on Opacified Data. Jana et al. built the
recognizer OS abstraction and Darkly [39, 40]—systems
that enable apps to compute on perceptual data while
protecting the user’s privacy. These systems also use
opaque handles, but they only support trusted functions
operating on the raw data that handles refer to. In con-
trast, FlowFence supports untrusted third-party functions
executing over raw data while providing flow control
guarantees. Furthermore, these systems leverage char-
acteristics of the data they are trying to protect to achieve
security guarantees. For example, Darkly depends on
camera streams being amenable to privacy transforms,
allowing it to substitute low-fidelity data for high-fidelity
data, and it depends on apps being able to tolerate the
differences. However, in the general case, neither IoT
data nor their apps may be amenable to such transforms.
FlowFence is explicitly designed to support computation
over sensitive IoT data in the general case.
Taint Tracking. Taint tracking systems [69, 19] are
popular techniques for enforcing flow control that mon-
itor data flows through programs [60]. Beyond perfor-
mance issues [48], such techniques suffer from an in-
ability to effectively handle implicit flows, and concur-
rency [59]. Although there are techniques to reduce com-
putational burden [54, 65], they often require specialized
hardware, not necessarily available in IoT environments.
These techniques are also difficult to apply to situations
where taint labels are not known a priori (e.g., man-
age tainted data that is generated by apps, rather than
known sources). Compared to these techniques, Flow-
Fence adds little performance overhead. Furthermore,
FlowFence does not require specialized hardware, and
does not suffer from implicit flow attacks.
Static Analysis. Another class of systems such as Flow-
Droid [9], and Amandroid [66] use static taint tracking
to enforce flow control. While these techniques do not
suffer from performance issues associated with dynamic
systems, they still suffer from same shortcomings asso-
ciated with concurrency and implicit flows [9]. Besides
static analysis techniques, there are also language-based
techniques, such as JFlow [45], that require the devel-
oper to learn and use a single security-typed language.
In contrast, FlowFence supports building apps using un-
modified existing languages and development tools, en-
abling developers to quickly port their apps.

8 Conclusions

Emerging IoT programming frameworks only support
permission based access control on sensitive data, mak-
ing it possible for malicious apps to abuse permissions
and leak data. In this work, we introduce the Opaci-
fied Computation model, and its concrete instantiation,
FlowFence, which requires consumers of sensitive data
to explicitly declare intended data flows. It enforces the
declared flows and prevents all other flows, including
implicit flows, efficiently. To achieve this, FlowFence
requires developers to split their apps into: (1) A set
of communicating Quarantined Modules with the unit
of communication being opaque handles—taint tracked,
opaque references to data that can only be dereferenced
inside sandboxes; (2) Non-sensitive code that does not
compute on sensitive data, but it still orchestrates execu-
tion of Quarantined Modules that compute on sensitive
data. We ported three IoT apps to FlowFence, each re-
quiring less than 140 additional lines of code. Latency
and throughput measurements of crucial operations of
the ported apps indicate that FlowFence adds little over-
head. For instance, we observed a 4.9% latency increase
to recognize a face in a door controller app.

Acknowledgements

We thank the anonymous reviewers and our shepherd,
Deian Stefan, for their insightful feedback on our work.
We thank Kevin Borders, Kevin Eykholt, and Jaeyeon
Jung for providing feedback on earlier drafts. This re-
search is supported in part by NSF grant CNS-1318722
and by a generous gift from General Motors. Mauro
Conti is supported by a Marie Curie Fellowship funded
by the European Commission (agreement PCIG11-GA-
2012-321980). His work is also partially supported by
the EU TagItSmart! Project (agreement H2020-ICT30-
2015-688061), the EU-India REACH Project (agreement
ICI+/2014/342-896), the Italian MIUR-PRIN TENACE
Project (agreement 20103P34XC), and by the projects
“Tackling Mobile Malware with Innovative Machine
Learning Techniques,” “Physical-Layer Security for
Wireless Communication,” and “Content Centric Net-
working: Security and Privacy Issues” funded by the
University of Padua. Any opinions, findings, conclu-
sions, and recommendations expressed in this paper are
those of the authors and do not necessarily reflect the
views of the sponsors.

References
[1] Android auto. https://www.android.com/auto/. Accessed:

May 2016.
[2] Android wear. https://www.android.com/wear/. Accessed:

May 2016.

546 25th USENIX Security Symposium USENIX Association

[3] Logitech harmony hub. http://www.logitech.com/en-us/

product/harmony-hub. Accessed: May 2016.

[4] Samsung SmartThings Home Automation. http://www.

smartthings.com/. Accessed: Oct 2015.

[5] Vera Smart Home Controller. http://getvera.com/

controllers/vera3/. Accessed: Oct 2015.

[6] ALMUHIMEDI, H., SCHAUB, F., SADEH, N., ADJERID, I., AC-
QUISTI, A., GLUCK, J., CRANOR, L. F., AND AGARWAL, Y.
Your Location Has Been Shared 5,398 Times!: A Field Study on
Mobile App Privacy Nudging. In ACM Conference on Human
Factors in Computing Systems (CHI) (2015).

[7] APPLE. Apple TV Memory Specifications. https://

developer.apple.com/library/tvos/documentation/

General/Conceptual/AppleTV_PG/index.html#//

apple_ref/doc/uid/TP40015241-CH12-SW1. Accessed:
June 2016.

[8] APPLE. HomeKit. http://www.apple.com/ios/homekit/.
Accessed: Oct 2015.

[9] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In ACM sym-
posium on Programming Language Design and Implementation
(PLDI) (2014).

[10] BACKES, M., BUGIEL, S., AND GERLING, S. Scippa: System-
centric ipc provenance on android. In Proceedings of the 30th
Annual Computer Security Applications Conference (2014).

[11] BEHRANG FOULADI AND SAHAND GHANOUN. Honey, I’m
Home!!, Hacking ZWave Home Automation Systems. Black Hat
USA, 2013.

[12] BUSOLD, C., HEUSER, S., RIOS, J., SADEGHI, A.-R., AND
ASOKAN, N. Smart and secure cross-device apps for the internet
of advanced things. In Financial Cryptography and Data Security
(FC) (2015).

[13] CARD, S. K., ROBERTSON, G. G., AND MACKINLAY, J. D.
The information visualizer, an information workspace. In
SIGCHI Conference on Human factors in computing systems
(1991).

[14] CARLINI, N., FELT, A. P., AND WAGNER, D. An evaluation of
the google chrome extension security architecture. In Presented
as part of the 21st USENIX Security Symposium (USENIX Secu-
rity 12) (2012).

[15] CHENG, W., PORTS, D. R., SCHULTZ, D., POPIC, V.,
BLANKSTEIN, A., COWLING, J., CURTIS, D., SHRIRA, L.,
AND LISKOV, B. Abstractions for usable information flow con-
trol in aeolus. In USENIX ATC (2012).

[16] CONTI, M., CRISPO, B., FERNANDES, E., AND ZHAU-
NIAROVICH, Y. Crêpe: A system for enforcing fine-grained
context-related policies on android. TIFS (2012).

[17] DENNING, T., KOHNO, T., AND LEVY, H. M. Computer secu-
rity and the modern home. Communications of ACM (2013).

[18] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIÈRES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the asbestos operating system. In SOSP (2005).

[19] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In OSDI (2010).

[20] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On lightweight
mobile phone application certification. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2009).

[21] ERNST, M. D., JUST, R., MILLSTEIN, S., DIETL, W., PERN-
STEINER, S., ROESNER, F., KOSCHER, K., BARROS, P. B.,
BHORASKAR, R., HAN, S., VINES, P., AND WU, E. X. Col-
laborative verification of information flow for a high-assurance
app store. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS) (2014).

[22] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android permissions demystified. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2011).

[23] FELT, A. P., EGELMAN, S., FINIFTER, M., AKHAWE, D., AND
WAGNER, D. How to ask for permission. In USENIX Conference
on Hot Topics in Security (HotSec) (2012).

[24] FELT, A. P., EGELMAN, S., AND WAGNER, D. I’ve got 99 prob-
lems, but vibration ain’t one: A survey of smartphone users’ con-
cerns. In Proceedings of the Second ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (2012).

[25] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android permissions: User attention, com-
prehension, and behavior. In Proceedings of the Eighth Sympo-
sium on Usable Privacy and Security (2012), Symposium On Us-
able Privacy and Security (SOUPS).

[26] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analy-
sis of emerging smart home applications. In IEEE Symposium on
Security and Privacy (S&P) (2016).

[27] FISHER, D. Pair of Bugs Open Honeywell Home Controllers
Up to Easy Hacks. https://threatpost.com/pair-

of-bugs-open-honeywell-home-controllers-up-to-

easy-hacks/113965/. Accessed: Oct 2015.

[28] GIFFIN, D. B., LEVY, A., STEFAN, D., TEREI, D., MAZIÈRES,
D., MITCHELL, J. C., AND RUSSO, A. Hails: Protecting data
privacy in untrusted web applications. In OSDI (2012).

[29] GOOGLE. Project Brillo. https://developers.google.

com/brillo/. Accessed: Oct 2015.

[30] GOOGLE. Project Weave. https://developers.google.

com/weave/. Accessed: Oct 2015.

[31] GOOGLE ANDROID. Requesting Permissions at Run-
time. http://developer.android.com/training/

permissions/requesting.html. Accessed: Feb 2016.

[32] GOOGLE DEVELOPERS. Google Fit Developer Documenta-
tion. https://developers.google.com/fit/. Accessed:
Feb 2016.

[33] GOOGLE NEST. How much bandwidth will Nest cam
use? https://nest.com/support/article/How-much-

bandwidth-will-Nest-Cam-use. Accessed: June 2016.

[34] HACHMAN, M. Want to unlock your door with your
face? Windows 10 for IoT Core promises to do just that.
http://www.pcworld.com/article/2962330/internet-

of-things/want-to-unlock-your-door-with-your-

face-windows-10-for-iot-core-promises-to-do-

just-that.html. Accessed: Feb 2016.

[35] HESSELDAHL, A. A Hacker’s-Eye View of the Internet
of Things. http://recode.net/2015/04/07/a-hackers-

eye-view-of-the-internet-of-things/. Accessed: Oct
2015.

[36] HEULE, S., RIFKIN, D., RUSSO, A., AND STEFAN, D. The
most dangerous code in the browser. In 15th Workshop on
Hot Topics in Operating Systems (HotOS XV) (Kartause Ittingen,
Switzerland, May 2015), USENIX Association.

[37] HRITCU, C., GREENBERG, M., KAREL, B., PIERCE, B. C.,
AND MORRISETT, G. All your ifcexception are belong to us. In
Proceedings of the 2013 IEEE Symposium on Security and Pri-
vacy (2013), SP ’13.

USENIX Association 25th USENIX Security Symposium 547

[38] HRITCU, C., GREENBERG, M., KAREL, B., PIERCE, B. C.,
AND MORRISETT, G. All your ifcexception are belong to us.
In Security and Privacy (SP), 2013 IEEE Symposium on (2013),
IEEE.

[39] JANA, S., MOLNAR, D., MOSHCHUK, A., DUNN, A.,
LIVSHITS, B., WANG, H. J., AND OFEK, E. Enabling fine-
grained permissions for augmented reality applications with rec-
ognizers. In USENIX Security Symposium (2013).

[40] JANA, S., NARAYANAN, A., AND SHMATIKOV, V. A Scanner
Darkly: Protecting User Privacy from Perceptual Applications.
In IEEE Symposium on Security and Privacy (S&P) (2013).

[41] JIA, L., ALJURAIDAN, J., FRAGKAKI, E., BAUER, L.,
STROUCKEN, M., FUKUSHIMA, K., KIYOMOTO, S., AND
MIYAKE, Y. Run-time enforcement of information-flow prop-
erties on android. In European Symposium on Research in Com-
puter Security (2013).

[42] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion flow control for standard os abstractions. In SOSP (2007).

[43] LEE, S., WONG, E. L., GOEL, D., DAHLIN, M., AND
SHMATIKOV, V. box: A platform for privacy-preserving apps.
In NSDI (2013).

[44] LOMAS, N. Critical Flaw identified In ZigBee Smart Home De-
vices. http://techcrunch.com/2015/08/07/critical-

flaw-ided-in-zigbee-smart-home-devices/. Accessed:
Oct 2015.

[45] MYERS, A. C. Jflow: Practical mostly-static information flow
control. In SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL) (1999).

[46] NADKARNI, A., AND ENCK, W. Preventing accidental data dis-
closure in modern operating systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM.

[47] PANSARASA, J. Lights-After-Dark SmartThings App.
https://github.com/jpansarasa/SmartThings/blob/

master/smartapps/elasticdev/lights-after-dark.

src/lights-after-dark.groovy. Accessed: Feb 2016.

[48] PAUPORE, J., FERNANDES, E., PRAKASH, A., ROY, S., AND
OU, X. Practical always-on taint tracking on mobile devices. In
USENIX Workshop on Hot Topics in Operating Systems (HotOS)
(2015).

[49] RAHMATI, A., AND MADHYASTHA, H. V. Context-specific ac-
cess control: Conforming permissions with user expectations. In
ACM Workshop on Security and Privacy in Smartphones & Mo-
bile Devices (SPSM) (2015).

[50] ROESNER, F., AND KOHNO, T. Securing embedded user in-
terfaces: Android and beyond. In USENIX Security Symposium
(2013).

[51] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,
WANG, H. J., AND COWAN, C. User-driven access control: Re-
thinking permission granting in modern operating systems. In
IEEE S&P (2012).

[52] ROY, I., PORTER, D. E., BOND, M. D., MCKINLEY, K. S.,
AND WITCHEL, E. Laminar: Practical fine-grained decentralized
information flow control. In PLDI (2009).

[53] RUSSELLO, G., CONTI, M., CRISPO, B., AND FERNANDES, E.
Moses: Supporting operation modes on smartphones. In ACM
Symposium on Access Control Models and Technologies (SAC-
MAT) (2012).

[54] RUWASE, O., GIBBONS, P. B., MOWRY, T. C., RAMACHAN-
DRAN, V., CHEN, S., KOZUCH, M., AND RYAN, M. Paralleliz-
ing dynamic information flow tracking. In Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures (2008).

[55] SAMSUNG. SmartThings. http://www.smartthings.com/.
Accessed: Nov 2015.

[56] SAMSUNG SMARTTHINGS. Samsung SmartThings Memory
Specifications. https://community.smartthings.com/

t/the-next-generation-of-smartthings-is-here/

21521. Accessed: June 2016.

[57] SAMSUNG SMARTTHINGS. SmartThings Capabilities Ref-
erence. http://docs.smartthings.com/en/latest/

capabilities-reference.html. Accessed: Feb 2016.

[58] SAMSUNG SMARTTHINGS. What happens if the power
goes out or I lose my internet connection? https:

//support.smartthings.com/hc/en-us/articles/

205956960-What-happens-if-the-power-goes-out-

or-I-lose-my-internet-connection-. Accessed: May
2016.

[59] SARWAR, G., MEHANI, O., BORELI, R., AND KAAFAR, M. A.
On the effectiveness of dynamic taint analysis for protecting
against private information leaks on android-based devices. In
International Conference on Security and Cryptography (SE-
CRYPT) (2013).

[60] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symposium on Security and Privacy (S&P) (2010).

[61] STEFAN, D., RUSSO, A., BUIRAS, P., LEVY, A., MITCHELL,
J. C., AND MAZIÉRES, D. Addressing covert termination and
timing channels in concurrent information flow systems. In ACM
SIGPLAN Notices (2012).

[62] STEFAN, D., RUSSO, A., MITCHELL, J. C., AND MAZIÈRES,
D. Flexible dynamic information flow control in Haskell. In
Haskell Symposium (September 2011), ACM SIGPLAN.

[63] STEFAN, D., YANG, E. Z., MARCHENKO, P., RUSSO, A., HER-
MAN, D., KARP, B., AND MAZIÈRES, D. Protecting users by
confining javascript with cowl. In OSDI (2014).

[64] TEMPLEMAN, R., RAHMAN, Z., CRANDALL, D., AND KAPA-
DIA, A. PlaceRaider: Virtual theft in physical spaces with smart-
phones. In ISOC Network and Distributed System Security Sym-
posium (NDSS) (2013).

[65] VACHHARAJANI, N., BRIDGES, M. J., CHANG, J., RANGAN,
R., OTTONI, G., BLOME, J. A., REIS, G. A., VACHHARAJANI,
M., AND AUGUST, D. I. Rifle: An architectural framework
for user-centric information-flow security. In Microarchitecture,
2004. MICRO-37 2004. 37th International Symposium on (2004).

[66] WEI, F., ROY, S., OU, X., AND ROBBY. Amandroid: A pre-
cise and general inter-component data flow analysis framework
for security vetting of android apps. In ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014).

[67] WETHERELL, J. Android Heart Rate Monitor App.
https://github.com/phishman3579/android-heart-

rate-monitor. Accessed: Feb 2016.

[68] XU, Y., HUNT, T., KWON, Y., GEORGIEV, M., SHMATIKOV,
V., AND WITCHEL, E. Earp: Principled storage, sharing, and
protection for mobile apps. In NSDI (2016).

[69] XU, Y., AND WITCHEL, E. Maxoid: Transparently confining
mobile applications with custom views of state. In Proceedings
of the Tenth European Conference on Computer Systems (2015),
ACM.

[70] YOON, M.-K., SALAJEGHEH, N., CHEN, Y., AND
CHRISTODORESCU, M. Pift: Predictive information flow
tracking. In 21st International Conference on Architectural
Support for Programming Languages and Operating Systems
(2016).

548 25th USENIX Security Symposium USENIX Association

[71] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in histar. In
OSDI (2006).

[72] ZHANG, D., ASKAROV, A., AND MYERS, A. C. Predictive
mitigation of timing channels in interactive systems. In ACM
SIGSAC Conference on Computer and Communications Security
(CCS) (2011).

[73] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In IEEE S&P (2012).

QM-management Data Types and API Semantics
Handle An opaque handle. Data is stored in the Trusted Service, with its

taint labels.

QM <T> A reference to a QM of type T, on which developers can issue
method calls.

QM <T> ctor = resolveCtor(T) Resolve the constructor for QM T, and return a reference to it.

QM <T> m = resolveM(retType, T, methStr,
[paramTypes])

Resolve an instance/static method of a QM, loading the QM into
a sandbox if necessary.

Handle ret = QM <T>.call([argList]) Call a method on a loaded QM, and return an opaque handle as
the result.

subscribeEventChannel(appID, channelName,
QM <T>)

Subscribe to a channel for updates, and register a QM to be exe-
cuted automatically whenever new data is placed on the channel.

Within-QM Data Types and API Semantics
KVStore Provides methods to interact with the Key-Value Store.

KVStore kvs = getKVStore(appID, name) Get a reference to a named KVStore.

kvs.put<T>(key, value, taint label) Put a (key, value) pair into the KVStore along with a taint label,
where T can be a basic type such as Int, Float, or a serializable
type. Any existing taint of the calling QM will be automatically
associated with the value’s final set of taint labels.

T value = kvs.get<T>(key) Get the value of type T corresponding to specified key, and taint
the QM with the appropriate set of taint labels.

getTrustedAPI(apiName).invoke([params]) Call a Trusted API method to declassify sensitive data.

getChannel(chanName).fireEvent(taint label,
[params])

Fire an event with parameters, specifying taint label. Any existing
taint labels of the calling QM will be added automatically.

Table 4: FlowFence API Summary. QM-management data types and API is only available to the untrusted portion of
an app that does not operate with sensitive data. The Within-QM data types and API is available only to QMs.

Appendix A: FlowFence API

We summarize the object-oriented FlowFence API for
developers in Table 4. There are two kinds of API:
QM-management, and Within-QM. Developers use the
QM-management API to request loading QMs into sand-
boxes, making QM calls, and receiving opaque handles
as return values. The primary data types are: QM <T>,
and Handle. The former data type represents a refer-
ence to a loaded QM. The latter data type represents an
opaque handle, that FlowFence creates as a return value
of a QM. Developers use resolveCtor, or resolveM to
load a specific QM into a sandbox (FlowFence automati-
cally manages sandboxes), and receive a reference to the
loaded QM. Then, developers specify the string name of
a QM method to execute.

The Within-QM API is available to QMs while they
are executing within a sandbox. Currently, FlowFence
has two data types available for QMs. KVStore offers
ways to get and put values in the Key-Value store. The
Trusted API offers facilities like network communica-
tion, logging, and smart home control (our prototype has
a bridge to SmartThings).

