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D evices with computational 
and networking capabilities 

are enhancing our homes, hos-
pitals, cities, and industries. This 
emerging network of connected 
devices—or Internet of Things 
(IoT)—promises better safety, 
enhanced management of patients, 
improved energy efficiency, and 
optimized manufacturing pro-
cesses. Despite these many ben-
efits, security vulnerabilities in 
these systems can lead to user 
dissatisfaction (for instance, ran-
dom bugs), privacy violation (for 
instance, eavesdropping), mon-
etary loss (for instance, denial-of-
service attacks or ransomware), 
or even loss of life (for instance, 
attackers controlling vehicles1). 
Therefore, it is critical to secure 
this emerging technology revolu-
tion in a timely manner.

Although the research com-
munity has begun tackling chal-
lenges in securing the IoT, an 
often-asked question is: What are 
the new intellectual challenges in 
the science of security when we 
talk about the IoT, and what prob-
lems can we solve using currently 
known security techniques? This 
article summarizes some similari-
ties and differences between IoT 
security research and classic IT 
security research. 

We take a broad view of the IoT, 
touching on consumer-grade, indus-
trial control systems and autono-
mous vehicles. Other IoT areas, 
such as smart cities, are outside the 

scope of this article. A whole set 
of privacy issues might arise from 
always-connected devices in the 
physical environment—this article 
doesn’t go into depth on these chal-
lenges, but Nigel Davies and his 
colleagues discuss possible chal-
lenges and solutions in “Privacy 
Mediators: Helping IoT Cross the 
Chasm.”2 Our focus is on security 
and safety issues.

Similarities and 
Differences
We classify the similarities and dif-
ferences based on the standard 
computing stack: hardware, system 
software, network, and application 
layer. The IoT computing stack is 
structured similarly: 

 ■ At the lowest layer are devices 
that can sense and effect physical 
change in the environment. 

 ■ The next layer comprises IoT 
platforms— software systems that 
aggregate multiple devices and 
controlling software to perform 
useful tasks. 

 ■ Next, various connectivity/net-
work protocols enable software 
and physical devices to communi-
cate with one another. 

 ■ Finally, the application layer runs 
custom code to control physical 
processes. 

We discuss areas of similarities and 
differences next. We note that it is 
not our goal to be exhaustive in our 
discussion. 
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Hardware Layer
The hardware layer often forms a 
root of trust in modern comput-
ing systems, and we expect that 
hardware security research results 
developed in the context of desk-
top, mobile, and cloud systems 
will transfer in some form to IoT 
systems. We focus on two themes: 
security for hardware and hardware 
for security.

Security for hardware. Recent 
work has shown the possibility of 
hardware-level Trojans— malicious 
components or instruction 
sequences that, when 
triggered, circumvent 
security guarantees. Kai-
yuan Yang and his col-
leagues recently showed 
how fabrication-time 
attackers can inject ana-
log components that 
force a flip-flop, which 
maintains the processor’s privilege 
bit, to a target value.3 With a large 
percentage of IoT devices being 
manufactured by third parties (often 
overseas), hardware-level attacks are 
an increasing point of concern.

Given the relative simplicity of 
IoT devices, such as sensors and 
microcontrollers, in comparison to 
general-purpose computer proces-
sors, open questions are whether 
such attacks can remain stealthy, 
and whether postfabrication testing 
can be more effective in determin-
ing whether hardware Trojans exist 
in a chip.

Hardware for security. Galen Hunt 
and his colleagues recently discussed 
this topic in The Seven Properties of 
Highly Secure Devices. Two proper-
ties directly concern hardware secu-
rity techniques: a hardware root of 
trust and hardware-supported soft-
ware isolation.4

Although the ideas of using 
hardware mechanisms to securely 
store cryptographic keys (for exam-
ple, trusted platform modules and 

one-time fuses) and to create iso-
lation units (for example, memory 
management units and Intel Soft-
ware Guard Extension enclaves) 
are similar to those in classic IT 
research, we envision many chal-
lenges arising in applying these 
notions of hardware security to IoT 
systems due to their limited compu-
tational and energy constraints.

These computational and energy 
limitations can affect higher-layer 
security primitives—some IoT 
devices might not have very precise 
real-time clocks, making it harder 
to implement even the most basic 

of network security protocols that 
assume the presence of reliable 
clocks. For example, Amir Rahmati 
and his colleagues showed how the 
natural decay rate of static RAM can 
be used as a timekeeper for embed-
ded devices without clocks (for 
instance, smart cards).5

In general, we observe that 
although the core notions of creat-
ing hardware to support security 
primitives is similar to other com-
puting paradigms, the computa-
tional and energy limitations at the 
hardware layer can impact secu-
rity mechanisms at higher layers in 
the context of the IoT computing 
paradigm. We also observe that, 
conversely, higher-layer security 
properties might have to be tuned 
to the specific limitations of the 
IoT device through a hardware– 
software codesign approach.

System Software Layer
The system software layer consists 
of firmware, OS code, and any priv-
ileged system applications or pro-
gramming frameworks. This layer 

builds on hardware mechanisms 
for establishing trust and isola-
tion. We believe that many security 
principles developed in the con-
text of mobile, desktop, and cloud 
computing will be applicable to 
IoT platforms—software systems 
that are similar in function to OSs 
for other computing paradigms. 
We discuss a few areas of similari-
ties and differences, categorized by 
security principle.

Process isolation. Current OSs pro-
vide a basic primitive: a fault in 
one process doesn’t affect other 

processes on the system. 
These isolation guar-
antees depend on the 
presence of a hardware 
memory management 
unit (MMU). In small 
IoT devices (for instance, 
devices with 64 Kbytes of 
RAM), such an MMU is 

generally absent. A challenge here 
is to support the classic notion of 
process isolation without an MMU. 
The Tock OS is currently exploring 
a combination of language-based 
isolation features and memory pro-
tection units to provide a process 
isolation abstraction.6

In general, although the 
notion of process isolation is 
well-known, enabling it for OSs of 
resource-constrained IoT devices 
can require new techniques, 
whereas enabling it for IoT devices 
with more resources, for example, 
Nest thermostats or Amazon Alexa, 
likely won’t be a challenge. 

Access control. OSs protect 
resources from untrusted code 
using access control. A piece of 
code is either given a token (as 
in a capability-based system) or 
assigned an unforgeable unique 
identity on which access control 
rules are expressed. Building an 
access control system for a particu-
lar domain is often challenging. Our 
prior work in analyzing consumer 

Hardware security research results 

developed in desktop, mobile, and cloud 

systems will likely transfer to IoT systems. 
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IoT platforms revealed access con-
trol design errors as a security flaw.7 
We performed an empirical security 
analysis of the Smart Things plat-
form and found that access con-
trol granularity wasn’t designed 
appropriately, and it led to exploit-
able overprivilege. A fundamental 
reason for such granularity design 
errors in access control systems 
stems from the tension between 
usability and security. This ten-
sion has manifested itself before, in 
mobile OSs8 and, before them, in 
desktop OSs.9

Although the notion of access 
control still applies to IoT plat-
forms, there are new challenges in 
the usability aspect of designing 
such systems. For example, most 
prior access control systems dealt 
with virtual objects such as files 
and processes. In the IoT space, the 
objects of access control are physi-
cal devices and intuitive physical 
operations. An interesting challenge 
is how to exploit our natural intu-
itions about physical objects while 
designing an access control system 
for IoT platforms. For example, Ear-
lence Fernandes and his colleagues 
recently discussed the notion of a 
user-perceived-risk-based access 
control system for IoT platforms.7

Information flow control. Access 
control is a gatekeeper—once the 
code obtains access to sensitive 
resources, access control doesn’t 
provide any further protection. 
We analyzed a set of smart home 
platforms and found that current 
platforms use only access control. 
Information flow control (IFC) is 
a promising technique to control 
how untrusted code uses its access 
to sensitive resources.10

Although IFC isn’t a new con-
cept, as evidenced by the multitude 
of proposed systems for various 
domains, the challenge lies in apply-
ing it meaningfully to a specific 
domain. For example, FlowFence is 
a recent proposal for consumer IoT 

frameworks that enables a dataflow 
graph approach to IFC due to the 
structure of IoT apps.11 Further-
more, the kinds of confidentiality 
properties for environments such 
as homes are well-studied; however, 
the kinds of integrity properties that 
we might need, which are arguably 
more important in the IoT, have 
been less well-studied.

Software updates. Updating software 
is a fundamental security practice 
to patch security bugs and include 
additional features once devices are 
deployed. For smartphones, PCs, 
and cloud services, updating soft-
ware is a well-understood, secure, 
and common practice. However, for 
physical devices in the IoT, several 
challenges arise:

 ■ Upgrading software might require 
a shutdown of the physical pro-
cesses under control,12 which 
could have an economic impact.

 ■ Updates might require reverifi-
cation of compliance policies for 
safety-critical devices in sensi-
tive installations like factories 
and hospitals.

 ■ Updates on computers in tertiary 
network functions (for instance, 
a business network) can have 
un intended effects on a physical 
process. A prominent example of a 
negative effect of this kind was the 
shutdown of a nuclear reactor due 
to a software update on a computer 
in the plant’s business network.13

 ■ Many IoT devices deployed in 
the field (such as in concrete 
bridges) can be difficult to physi-
cally access and might be inter-
mittently powered (by harvesting 
power from vibrations). Updating 
the software on such intermit-
tently powered devices is a chal-
lenge that classical computing 
systems generally don’t face.

 ■ IoT devices might not be updat-
able fundamentally because the 
manufacturers didn’t build an 
update channel. In this case, we 

need to revisit our notion of a 
software update of the host (the 
device) and include notions of 
network-based patches.14

Although software updates for secu-
rity are a well-understood concept, 
designing update systems for the 
IoT poses new challenges because 
of the unique properties of the 
physical processes that are under 
the control of software.

Authentication. Passwords are cur-
rently the most widely used mecha-
nism to authenticate users to their 
IoT devices, platforms, and services. 
But, they are also a major point of 
concern because weak passwords 
are pervasive and have recently 
enabled large denial-of-service 
attacks from botnets.15 Although 
there are lightweight techniques 
to obtain statistical estimations of 
password strength (github.com 
/dropbox/zxcvbn), weak pass-
words are still rampant. We don’t 
view enforcing reasonable strength 
passwords (nondefault) as a tech-
nical difference from IT security, 
but  rather we view it as a usability 
challenge. Some proposals suggest 
moving away from password-based 
authentication schemes.4

Open challenges in authenti-
cating users to IoT devices include 
answering the following: 

 ■ Are activity-based biometrics 
(for instance, gait and heart-rate) 
a better alternative to passwords 
given that IoT devices interact 
with physical phenomena? 

 ■ IoT devices don’t necessarily have 
classic I/O (for instance, no display 
in Google Home)—this can affect 
authentication schemes like pass-
words. Can we design authentica-
tion schemes of equivalent security 
for different interaction modalities?

Network Layer
As in a classic computing stack, 
the network layer in the IoT stack 
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enables devices and software to 
communicate with each other. How-
ever, different from classic network-
ing, IoT networking is marked by a 
multitude of protocols and is gener-
ally populated with fixed-function 
devices. We elaborate how these 
differences results in new security 
challenges and mechanisms.

Connectivity protocol diversity. The 
network layer in the IoT is marked 
by various physical media and com-
munication protocols. 
Part of this connectivity 
protocol diversity stems 
from the relative infancy 
of this technology, and 
part of it stems from the 
constraints imposed 
by devices or from the 
physical spaces that host 
these devices. For intermittently 
powered devices, short-range pro-
tocols like Bluetooth Low Energy 
(BLE) and near-field communica-
tion (NFC) are vital in conserv-
ing energy. For devices located in 
existing infrastructure, protocols 
like physical-line communications 
avoid expensive infrastructural 
costs. Similarly, visible-light com-
munication can be useful because 
lights are ubiquitous in physical 
spaces. This protocol diversity dis-
rupts the operation of network 
scanning—a fundamental security 
practice. We highlight this using 
a BLE port–scanning case study, 
described below.  

In BLE, a rough analog of a TCP 
port is a service UUID (Univer-
sally Unique Identifier). A device 
can support multiple UUIDs that 
define the kinds of functionality it 
provides. There are UUIDs for fit-
ness machines, heart monitors, and 
so on (see www.bluetooth.com 
/specifications/gatt/ser vices). 
When a BLE device is disconnected, 
it sends out advertisements that can 
help controllers (or scanners) dis-
cover the device, and attempt con-
nections. Advertisements contain 

rudimentary information, so con-
nections are required to get a full 
list of the services a device supports. 
Therefore, for a scanner to work reli-
ably, a device would have to be in a 
disconnected state as a BLE device 
accepts only a single connection for 
its services, unlike TCP ports, where 
multiple simultaneous connections 
can be serviced on the same port. 
This introduces randomness into the 
scanning process as the scanner will 
have to “try again” at a later point in 

time in the hope that the BLE device 
is in the disconnected state. Further-
more, if a BLE device is connected, 
it doesn’t send advertisements, fur-
ther complicating scanner operation. 
(Sophisticated scanners could try 
to jam existing connections to force 
them to drop.)

Therefore, scanners for IoT pro-
tocols are currently very network 
specific and offer only limited cov-
erage (BLE scanners will be useful 
only for BLE devices, but it’s com-
mon for physical spaces such as a 
home to contain devices using dif-
ferent connectivity protocols). This 
contrasts starkly with the Internet in 
general, in which TCP/IP is a con-
stant presence for online services 
where network scanning is typi-
cally used. Port scanning is further 
complicated in the consumer IoT 
space due to the practice of placing 
devices behind a hub or router. Net-
work scanners situated outside such 
a network won’t be able to conduct 
internal scans.

Because each protocol has its 
own notions of how two peers 
communicate with each other, it’s 
unclear how network security prac-
tices such as port scanning translate 

to networks of devices that use vari-
ous IoT protocols.

Repurposing networking technolo-
gies in unforeseen ways. Again, a 
common IoT system architecture 
for smart homes is to connect mul-
tiple devices to a hub. If all the home 
IoT devices use Wi-Fi as a connec-
tivity protocol, then a Wi-Fi router 
can be a hub. This kind of configura-
tion poses new security challenges 
that Wi-Fi wasn’t designed to sup-

port. For example, it’s 
very difficult to ensure 
that only a Wi-Fi-enabled 
presence detector affects 
a door lock. Such an iso-
lation boundary is use-
ful because there could 
be multiple devices on a 
network, some of which 

might be malicious or compro-
mised through bugs. The isola-
tion unit would serve as defense in 
depth against such a situation. Fur-
thermore, as we discussed, some 
devices might not have update 
channels, necessitating other means 
of updates. A central hub like a 
Wi-Fi router is in a good position to 
apply updates in the form of filters 
for known malicious traffic patterns. 
Anna Simpson and her colleagues 
discuss the design of a Wi-Fi home 
hub that can perform such security 
functions.16

In the context of smart homes, 
we observe that hubs like Wi-Fi 
routers are being increasingly used 
to support IoT device networks. 
Adapting these hubs to natively sup-
port security properties such as iso-
lation is an open challenge. 

Anomaly detection in the network. 
As defense in depth, detecting mis-
behaving devices on the network 
is a common and well-deployed 
security practice in many comput-
ing areas. The main challenge in 
obtaining useful results from anom-
aly detectors is tuning them to pro-
duce a low number of errors—that 

Challenges arise in adapting known 

security principles to make them work 

for the unique IoT computing paradigm.
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is, to minimize how often they 
either raise a flag for benign behav-
ior or don’t raise a flag for malicious 
behavior. This challenge arises due 
to the fundamental complexity of 
the devices we typically connect to 
a network—general-purpose com-
puters like mobile phones, desk-
tops, and servers. These devices 
perform multiple functions and 
lead to complicated network traces 
that make it difficult to character-
ize “normal” behavior. In contrast, 
IoT devices are simple and have a 
single purpose (that is, they have 
fixed functions). This can translate 
to simpler network dynamics and, 
hence, easier-to-model behaviors, 
ultimately leading to fewer errors 
in anomaly detectors. Recent work 
in the context of industrial control 
systems have yielded promising 
results—David Formby and his col-
leagues show how predictable net-
work characteristics of relays and 
circuit breakers can be used to reli-
ably fingerprint them.17

A physical process evolves as per 
physical laws in a generally predict-
able fashion. For example, a garage 
door of a certain mass takes a spe-
cific amount of time to close, and an 
oven of a certain volume heats up 
to a specific temperature in a pre-
dictable amount of time. We envi-
sion that models of these physical 
processes can be used to reduce 
the errors in anomaly detectors. 
In contrast, general-purpose com-
puters, by definition, don’t have 
well-defined behavior models when 
applications running on them are 
taken into account.

Application Layer
The application layer in the IoT is 
no different from other computing 
paradigms— it runs customized code 
for end-user scenarios. We consider 
two ways in which IoT application 
behavior can affect security.

Physical co-relations. Consider a 
simple if-this-then-that rule that 

closes a garage door after 9:00 p.m. If 
a speaker were placed in the vicinity 
of the motors controlling the door, 
it would record a specific acoustic 
pattern for a specific amount of time 
whenever the door closes. There is a 
natural physical co-relation between 
this acoustic pattern and the closing 
of the garage doors.

The natural co-relations between 
physical phenomena could act as 
feedback channels that IoT platforms 
could then use to approximately 
monitor physical processes for devia-
tions from expected behavior. If devi-
ations exist, then it would mean that a 
failure or security issue occurred. 

Machine learning and control of 
physical processes. In recent years, 
machine learning (ML) and deep 
learning have found wide applicabil-
ity to many computing domains—
deep-learning robots can learn to 
grasp objects, and the Nest ther-
mostat can learn and then control 
HVAC settings automatically. How-
ever, recent work has shown that 
deep-learning algorithms are suscep-
tible to adversarial manipulations of 
their input—attackers can craft input 
that looks indistinguishable from 
benign input to humans, but can be 
interpreted in a completely different 
way by machines. For example, tam-
pered images that are fed into a vision 
algorithm running on an autono-
mous vehicle can make the vehicle 
believe a stop sign was a yield sign, 
causing a possible crash at an inter-
section. Building robustness into ML 
algorithms against such attacks is an 
active area of research whose details 
are beyond this article’s scope. We 
refer readers to “Towards the Science 
of Security and Privacy in Machine 
Learning” for a more thorough treat-
ment of the topic.18

As more physical processes come 
under the control of ML algorithms, 
their vulnerabilities in adversarial 
settings will become pressing secu-
rity and safety issues. Classic IT 
security has often applied ML to 

security problems (for instance, 
malware detection); however, only 
recently has work begun on securing 
the ML algorithms.

Broadly, classic IT security 
research and IoT security 

research share the basic secure soft-
ware and hardware construction 
principles that have been developed 
in other computing paradigms. The 
differences form a spectrum of new 
intellectual challenges. On one end 
of this spectrum, challenges arise in 
applying and adapting known secu-
rity principles to make them work 
for the unique challenges posed 
by the IoT computing paradigm. 
We believe that overcoming many 
of these challenges will involve a 
cross-layer codesign approach. For 
example, due to limited energy 
availability, hardware security 
mechanisms might need to be 
purpose-built depending on the spe-
cific higher-level security property 
we want to enforce—it’s not pos-
sible to efficiently accommodate a 
one-size-fits-all security mechanism.

At the other end of the spectrum, 
the nature of both physical pro-
cesses and IoT devices lend them-
selves to the construction of new 
security mechanisms. As discussed, 
natural co-relations between physi-
cal phenomena can be exploited to 
detect security and safety failures. 
Similarly, the predictability of phys-
ical processes is another avenue 
that can be used to detect anoma-
lous events. Finally, introducing 
ideas from the control engineering 
world into IoT platform construc-
tion (for instance, specialized feed-
back loops) could lead to a safer and 
more secure IoT. 
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