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ABSTRACT

Smartphones are very effective tools for increasing the productiv-
ity of business users. With their increasing computational power
and storage capacity, smartphones allow end users to perform sev-
eral tasks and be always updated while on the move. As a con-
sequence, end users require that their personal smartphones are
connected to their work IT infrastructure. Companies are willing
to support employee-owned smartphones because of the increase
in productivity of their employees. However, smartphone security
mechanisms have been discovered to offer very limited protection
against malicious applications that can leak data stored on them.
This poses a serious threat to sensitive corporate data. In this paper
we present MOSES, a policy-based framework for enforcing soft-
ware isolation of applications and data on the Android platform. In
MOSES, it is possible to define distinct security profiles within a
single smartphone. Each security profile is associated with a set of
policies that control the access to applications and data. One of the
main characteristics of MOSES is the dynamic switching from one
security profile to another.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—access con-

trols, information flow controls

Keywords

Android Security Extension, Separation of Modes, Light Virtuali-
sation

1. INTRODUCTION
The total smartphone sales by the end of 2011 reached almost

half a billion worldwide. Analysts expect that these figures will
double by 2015 [7]. Of these, 100 million are sold only in the US,
where smartphone penetration will overtake feature phone penetra-
tion by the end of 2011. Almost half of the new smartphones (43%)
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are equipped with Android OS [3]. These few statistics are enough
to show how popular and pervasive smartphones are becoming and
the important role of Android in this market.

Such rapid growth is mostly justified by the fact that these mobile
platforms are open to any third party to develop new applications
and services. Consumers can easily download and install applica-
tions via well known distribution points like the Android Market.
This openness has thus created plenty of new business opportunity.
At the same time, however, it has raised some new security con-
cerns. Recently, several cases of privacy-abusing applications have
hit the media [5, 1]. Given the popularity of platforms such as An-
droid, it is not a surprise that this is a growing trend. Only in the
first half of 2011, between half a million to a million Android users
have installed malware-contaminated applications in their smart-
phones [4].

1.1 Motivations
With their increasing computational power and storage capac-

ity, smartphones allow end users to perform several tasks while be-
ing on the move. As a consequence, end users require that their
personal smartphones are connected to their work IT infrastruc-
ture. Companies are willing to support employee-owned smart-
phones because of the increase in productivity of their employees
and avoiding the need for them to carry around several devices
(i.e. at least one for work, and one for private computing). Sev-
eral device manufacturers are even following this trend by produc-
ing smartphones able to handle two SIMs (Subscriber Identification
Modules) at the same time.

However, because users can install third-party applications on
their smartphones, several security concerns may arise. For in-
stance, malicious applications may access emails, SMS and MMS
messages stored in the smartphone containing company confiden-
tial data. This poses serious security concerns to sensitive corporate
data, especially when the standard security mechanisms offered by
the platform are not sufficient to protect the users from such attacks.

One possible solution to this problem is to compartmentalize the
phone, by keeping applications and data related to work separated
from recreational applications and private/personal data. Within
the same device, separate security environments might exist: one
security environment could be only restricted to sensitive/corpo-
rate data and trusted applications; a second security environment
could be used for entertainment where third-party games and pop-
ular applications could be installed. As long as applications from
the second environment are not able to access data of the first envi-
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ronment the risk of leakage of sensitive information can be greatly
reduced.

Such a solution could be implemented by means of virtualisa-
tion technologies where different instances of an OS can run sep-
arately on the same device. Although virtualisation is quite ef-
fective when deployed in full-fledged devices (PC and servers),
it is still too resource demanding for embedded systems such as
smartphones. Another approach that is less resource demanding
is para-virtualisation. Unlikely full virtualisation where the guest
OS is not aware of running in a virtualised environment, in para-
virtualisation it is necessary to modify the guest OS to boost per-
formance. Para-virtualisation for smartphones is currently in de-
velopment and several solutions exist (e.g., Trango, VirtualLogix,
L4 microkernel [30], L4Android [21, 16]). However, all the vir-
tualisation solutions suffer from having a coarse grained approach
(i.e. the virtualised environments are completely separated, even
when this might be a limitation for interaction). Furthermore, the
switch among the environments takes a significant amount time and
battery.

1.2 Contributions
In this paper, we propose a light virtualisation solution for An-

droid phones. We named our solution MOSES (MOde-of-uses
SEparation for Smartphones). MOSES is a policy-based frame-
work for enforcing software isolation of applications and data. In
MOSES, it is possible to define distinct security profiles within a
single smartphone. Each security profile is associated with a set of
policies that control the access to applications and data. One of the
main characteristics of MOSES is the dynamic switching from one
security profile to another. Each profile is associated with a con-
text as well. Through the smartphones sensors, MOSES is able to
detect changes in context and to dynamically switch to the security
profile associated with the current context. We have implemented
MOSES and performed several performance tests. The results of
our experiments show that MOSES overhead is minimal and not
noticeable to the end user.

The rest of this paper is organised as follows. Section 2 pro-
vides an overview of the security framework of standard Android.
In Section 3, we describe an application scenario to better illustrate
the problem that we are addressing in this paper. Section 4 presents
the architectural details of MOSES. Section 5 is focused on the
main concept of our approach that is the separation of security pro-
files. The management of MOSES and security profiles are de-
scribed in Section 6. To demonstrate the effectiveness of MOSES,
we revisit our application scenario in Section 7. We have imple-
mented MOSES and the evaluation of its performances is analysed
in Section 8. In Section 9, we review existing approaches that aim
at extending the security mechanism of the Android platform. Fi-
nally, Section 10 provides our concluding remarks and highlights
future research directions.

2. ANDROID SECURITY
Google Android is a Linux-based mobile platform developed by

the Open Handset Alliance (OHA) [2]. Most of the Android appli-
cations are programmed in Java and compiled into a custom byte-
code that is run by the Dalvik Virtual Machine (DVM). In particu-
lar, each Android application is executed in its own address space
and in a separate DVM. Android applications are built combining
any of the following four basic components. Activities represent a
user interface; Services execute background processes; Broadcast

Receivers are mailboxes for communications within components of
the same application or belonging to different applications; Content

Providers store and share application’s data. Application compo-
nents communicate through messages called Intents.

Focusing on security, Android combines two levels of enforce-
ment [18, 29]: at the Linux system level and the application frame-
work level. At the Linux system level Android is a multi-process
system. During installation, an application is assigned with a unique
Linux user identifier (UID) and a group identifier (GID). Thus, in
the Android OS each application is executed as a different user pro-
cess within its own, isolated, address space.

At the application framework level, Android provides access con-
trol through the Inter-Component Communication (ICC) reference
monitor. The reference monitor provides Mandatory Access Con-
trol (MAC) enforcement on how applications access the compo-
nents. In the simplest form, protected features are assigned with
unique security labels—permissions. Protected features may in-
clude protected application components and system services (e.g.
Bluetooth). To make the use of protected features, the developer of
an application must declare the required permissions in its package
manifest file: AndroidManifest.xml.

As an example, consider an application that needs to monitor
incoming SMS messages, AndroidManifest.xml included in
the application’s package would specify: <uses-permission
android:name= "android.permission.RECEIVE_SMS"/>.
Permissions declared in the package manifest are granted at the
installation time and can not be modified later. Each permission
definition specifies a protection level which can be: normal (auto-
matically granted), dangerous (requires the user confirmation),
signature (requesting application must be signed with the same
key as the application declaring the permission), or signature
or system (granted to packages signed with the system key).

3. EXPLANATORY SCENARIO AND

REQUIREMENTS
In this section, we present an application scenario that will be

used throughout the rest of this paper to demonstrate the capabil-
ities of MOSES. Moreover, we list a set of requirements drawn
from the application scenario that will be used for comparing our
approach with existing ones.

More and more companies nowadays provide mobile versions of
their desktop applications. Studies have shown that allowing access
to enterprise services with smartphones increase employees’ pro-
ductivity [25]. An increasing number of companies are even em-
bracing the BYOD: Bring Your Own Device policy [6], leveraging
the employee’s smartphone to provide mobile access to company’s
applications.

Wise Inc. is one of such enterprises. Wise Inc.’s employees have
to install on their smartphone GroupMoveApp, a document collab-
oration application for Android allowing employees to view, edit,
and share company files from their smartphone. GroupMoveApp
can store files on the local SD and it uses a remote repository for
synchronising files. Wise Inc. decided to use a repository service
from Smart Inc., a cloud-based company that provides a very reli-
able infrastructure for a fraction of the cost of developing its own
solution.

From this simple scenario, we can identify the following security
requirements.

• R1: All the company files stored on the smartphone have to
be accessed only by the GroupMoveApp (or any other appli-
cation allowed by Wise Inc.). Any applications installed by
the employee and not authorised by Wise Inc. should not be
able to access company files.
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• R2: Company files can only be sent to the repository man-
aged by Smart Inc. For instance, the user should not be able
to use GroupMoveApp in a way such that the storage oper-
ation is hijacked to a destination different from Smart Inc.
Similarly, if the employee uses DropBox (i.e. an application
different from GroupMoveApp) for the backup of her own
files, she should not be able to drop company files in Drop-
Box.

• R3: At the same time, to protect the employee’s privacy
from Wise Inc., any personal files stored in the smartphone
should not be accessible to GroupMoveApp and/or stored in
the repository of Smart Inc.

• R4: Applications should not be able to use permissions not
granted to them by exploiting other application permissions.
For instance, GroupMoveApp may get infected by malware
that tries to send company files to a malicious server by using
the internet permission of the GroupMoveApp. The malware
should not be able to send the company files to another server
on the internet.

• R5: Finally, all the isolation features should be enforced on a
context-based mode. As an example, the phone might not be
allowed to run gaming applications during working hours,
while it could be allowed to do so in other contexts. Simi-
larly, an application should be allowed to access some spe-
cific data only under specific circumstances. For instance,
when on the train the employee should not access very sensi-
tive company data. This is to prevent other passengers from
possibly reading it. As another example, the use of some
applications (e.g. games) might be restricted under several
circumstances (e.g. low battery).

The security mechanism offered by standard Android is not ad-
equate to satisfy the requirements listed above. For instance, if the
user grants an application the permission to access the local SD
storage and internet then that application can read any file in the
SD and send it to any server (thus violating requirements R1, R2,
and R3). It is well-known that standard Android security is vul-
nerable to privilege spreading attacks [17], where an unprivileged
application exploits the permissions of privileged applications (in
clear violation of our requirement R4). Things in standard Android
are even worse. Applications can export services that other appli-
cations can use without the user being aware of this. Given the
open approach taken by Google that allows developers to create
applications for the Android Market by just paying a very small fee
($25), designing colluding applications, that, on purpose provide to
other applications their own permissions, is becoming increasingly
popular [11, 28, 22, 14]. Finally, in Android there is no notion of
dis/enabling applications or accessing data based on the notion of
context. The user can start any application and accessing any files
at any time and in any place (violating requirement R5)1.

In the literature, several approaches have been proposed that sat-
isfy some of the above requirements. However, to the best of our
knowledge none is able to satisfy all of the requirements at once.
Finally, it is important to realise that the aim of this work is not
to protect the corporate data from an employee that is actively en-
gaged in leaking sensitive data. In the rest of this paper, we as-
sume the smartphone user is not willing to behave maliciously, for

1R5 is partially addressable with Android 4.0, where it is possible
to enable/disable the camera according to time and location through
the Device Admin API.

instance by installing on her smartphone a rogue application for
intentionally leaking sensitive corporate data.

In the following section, we present MOSES, our Android se-
curity extension for data and application isolation which is able to
satisfy all the above requirements.
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Figure 1: MOSES Overview.

4. MOSES
In this section, we provide details about MOSES system model

and architecture.

4.1 System Model
Figure 1 provides an overview of MOSES. The MOSES frame-

work is implemented within the Android middleware and rewrites/ex-
tends some of its modules. The main concept in MOSES is that of a
Security Profile (SP). An SP represents an operation mode that can
be used as a logical isolation unit that contains: applications, data
and a set of security policies. Through the enforcement of the secu-
rity policies associated with an SP, MOSES guarantees that appli-
cations within that SP can access only the data within the same SP.
MOSES achieves this fine-grained level of enforcement by means
of data tainting implemented in the Policy Enforcement Module

(PEM). More details on this will be provided later. Here it suffices
to say that the data within a given SP is tainted with the SP name.
The security policies specified in that SP enforce the constraint that
applications can only access data tainted with the label of the same
SP name. For instance, in Figure 1 the data in the “Work” SP is
tainted with the label “Work”. The security policies of the “Work”
SP grant access to the data only to applications contained in the
same SP.

MOSES supports several SP instances within the same device.
By default, the “Default” SP is always present in MOSES. This SP
can be used for containing newly installed applications that are not
associated with any SP, or for data that is not tainted with any label.
A user can create new SPs and associate data and applications to the
profile by means of the MOSES Configuration Manager (MCM).
The user can use the MCM to edit the settings of existing ones.
However, an SP can also require special credentials to be edited.
For instance, the “Work” SP in Figure 1 is a special profile that
the user owning the smartphone cannot edit. This profile has been
created by the IT administrator of the company for which the user
of the smartphone works (e.g., Wise Inc.). In this way, the company
can make sure through MOSES that only the applications in the SP
“Work” are allowed to access the company data. There is no limit
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to the number of different SPs that MOSES can support. However,
for sake of simplicity, in the rest of this paper we consider only
two profiles in the phone: “Work” and “Private”. As we already
said above, the “Work” SP is used for accessing work-related data
through company-approved applications. The “Private” SP is used
by the user for accessing private information such as emails and
SMS messages from family and friends. Also, in “Private” SP the
user can install her preferred applications and games.

Activations and deactivations of SP instances are executed by
the MOSES Hypervisor (MH). When an SP is activated, the MH
loads the security policies of the SP in the Policy Enforcement

Module (PEM). When an application requests access to a piece of
information, the PEM grants access only if a security policy in the
SP grants such request. A user can switch manually from one SP to
another. However, MOSES provides a more advanced mechanism
where contextual information is used for automatically switching
SP. In MOSES, SPs may be associated with context information
(for instance location and time). When a given context is detected
then the MH activates the respective SP. The context is detected
through the Context Monitor System (CMS). For instance, the
“Work” SP can be activated only during working hours and within
the office facilities. Only outside the working environment, the em-
ployee is allowed to access applications and data within her private
profile.

Context can be also used for automatically labelling data and
applications. For instance, if a new contact is added to the phone
contact list, the context and the current profile of the phone can be
used to determine which label to use for tagging the new contact.
Similarly for a new application that is installed to the phone.

On the other hand, a label associated with the data together with
the current profile of the phone can be used to determine the be-
haviour of the phone. For instance, if the user receives a SMS from
a private contact while the current SP is “Work” then instead of pre-
senting directly the SMS to the user, MOSES can buffer the SMS
and present the SMS only when the SP changes to “Private”.

4.2 Architecture
In this section, we describe in more detail the internal compo-

nents of each of the modules within the MOSES architecture. The
components of each module are depicted in Figure 2.
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Figure 2: MOSES Architecture.

The MOSES Hypervisor (MH) represents the core module in
MOSES. Within the MH, the Security Profile Manager is respon-
sible for activating and deactivating the different SP instances de-
fined in the Profile Store. The Profile Store obtains SP instances
from the user either through the MOSES Configuration Manager or
from authorised third-parties via SMS, MMS and Bluetooth. The
SP switching can be done manually by the user or automatically
by detecting the context in which the user is. In this latter case,
the Security Profile Manager receives context information through
the Context Monitoring Module (CMM). In the CMM, the Context

Detector monitors the actual context by means of the smartphone
sensors. Context in MOSES is defined as a boolean expression
on the values generated by sensors. Context expressions associ-
ated with the SP instances contained in the Profile Store are stored
in the Context Expression DB. Periodically, the Context Detec-
tor samples the different sensors and checks whether any context
expression is satisfied. When a context expression is satisfied, the
Context Detector notifies the Security Profile Manager that a new
context has become active. If the new context is associated with
an SP different from the one that is currently active, the Security
Profile Manager makes active the corresponding SP. If no SP is as-
sociated with the new context, no changes are required.

The switching of SP consists in executing the following steps.
Firstly, the Security Profile Manager notifies the App Manager to
disable all the applications associated with the current SP. If appli-
cations are still active then the App Manager forces them to termi-
nate. Secondly, the Security Profile Manger disables the set of secu-
rity policies of the current SP that are stored in the Policy Provider

(a component of the Policy Enforcement Module). Thirdly, the set
of security policies associated with the new SP are enabled in the
Policy Provider. Finally, the Security Profile Manager retrieves the
list of applications of the new SP and notifies the App Manager to
enable them.

The enforcement of the security policies happens within the Pol-
icy Enforcement Module (PEM). When an application requests ac-
cess to a resource, the Policy Enforcement Point (PEP) intercepts
such a request. The PEP collects information about application
UID, the resource being accessed and the type of operation. The
PEP forwards this information to the Policy Decision Point (PDP).
The PDP uses the information received by the PEP to evaluate
the security policies relevant to the request stored in the Policy
Provider. Based on the evaluation of the policies, the PDP might
decide either to allow or disallow the request. The PDP informs the
PEP of the decision and then it is the responsibility of the PEP to
take the necessary actions for the enforcement of such a decision.

In Android, several components are responsible for mediating
access requests of applications to the device resources. Therefore,
we need to connect several PEPs with these components within
the Android Middleware to intercept such requests and to enforce
the PDP decisions. The PEP-1 is connected with the LibBinder
module for intercepting requests to access simple resources, such
as device ID (IMEI), phone number and location data, as well as
complex data such as user’s calendar and contact entries.

In the LibBinder, we intercept the standard cursor from where
we extract the CursorWindow. The CursorWindow provides
methods that can be used for modifying the data contained in the
cursor. Using the CursorWindow allows us to filter out from
the cursor data only part of the information. In this way, our en-
forcement mechanism achieves a fine-grained filter capability. For
instance, if a work application retrieves the contact entries from the
contact provider, all the private contact entries can be filter out from
the data contained in the CursorWindow before it is returned to
the application.
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Other PEPs are connected with some classes of the Java Frame-
work Library (JFL) in the Dalvik Virtual Machine. In particular, the
PEP-2 is connected with the Socket class for controlling network
traffic even if sent over an encrypted socket (SSL). In the Socket
class, we have modified the socket.open(address) method
to inspect the address to where the data is sent. In this way, we
can restrict the use of only authorised addresses or substitute the
address specified by the application with an address defined by the
user. By modifying the sendStream() method, we are able to
intercept the data before it is sent and perform some actions, such
as filtering or substitutions. Finally, for capturing operations on the
file system, such as reading and writing on the local storage, the
PEP-3 is connected with the OSFileSystem class.

5. REALISING SECURITY PROFILE ISO-

LATION
A central notion in MOSES is that of an SP (Security Profile)

representing our unit of isolation to separate execution of applica-
tions and data accesses. This isolation is achieved by (i) separation
of application executions, (ii) enforcement of security policies for
accessing data, and (iii) dynamic adaptation through context. In the
following, we provide details of each of these features.

5.1 Application Activity Separation
Separation of application executions is achieved by means of the

App Manager component contained in the MH (shown in Figure 2).
Each SP contains the list of applications that are allowed execute
when the SP is active. To provide an immediate feedback to the user
about which applications she is allowed to launch under a given SP,
we have modified the Android PackageManagerService to
display in the App Launcher only the applications defined in the
active SP.

The App Manager is also responsible for terminating the appli-
cations associated with the SP that is being deactivated. If a process
is not at the top of the Activity Stack, then the process will be just
killed. Otherwise, if the process is the one in foreground, the App
Manager launches a “decoy” activity which forces the previous ac-
tivity to be pushed to run in background. This, in turn, forces the
execution of onPause() in the Activity lifecycle, which gives
developers a chance to gracefully save the process state. We then
terminate the process and the “decoy” as well.

1 PolicyName: allow to Requester Operation on Target

2 with scope SP-Name

3 [perform Action(param-list)]

4 [while Condition]

Figure 3: The syntax of the MOSES policy language.

5.2 Security Policies
To constrain applications to access only data defined for the ac-

tive SP, we leverage a data tainting mechanism. The main idea
is that data within an SP is tainted with the SP name. For track-
ing the data, we use the TaintDroid labelling framework. We have
extended TaintDroid to be able to use as labels the SP names.2

Each taint is represented as a 32-bit value used to define the control

2Actually with our modifications of TaintDroid any labels can be
used to taint data. For instance, it is possible to specify different
labels for tainting data with different levels of sensitivity. For sake
of simplicity, in this work we require that data is tainted with at
least an SP name.

group, the taint label, and some extra information used for history
based inspection. The control group is used to specify whether the
data is coming from a system resource such as the GPS provider by
means of the “SYSTEM_SENT” tag. Also the control group can
be used to specify that the label associated with a data can be set
as a consequence of a policy evaluation. This is particular useful if
the taint of data needs to be augmented with labels to keep track of
all the applications that have received the data.

We have developed the MOSES policy language for specifying
security policies. Here we briefly introduce the syntax and se-
mantics of the language. Afterwards, in Section 7 we will present
more examples of security policies for our application scenario to
demonstrate the power and flexibility of our approach.

Figure 3 shows the syntax of a MOSES policy. Policies are iden-
tified by a name and define what Operation a Requester ap-
plication is allowed to execute on Target resources. In MOSES,
a resource can represent system content providers, system service
providers, and services exposed by other applications. The with
scope clause controls whether the requesting application is ac-
cessing data within the scope of the given SP-Name. Finally, a
policy can have two optional clauses: perform and while. The
perform clause specifies actions that have to be performed if this
policy is enforced. MOSES provides a set of libraries that can per-
form actions on the data (such as, filtering, anonymisation, gener-
ation of random values, data encryption) and on the values of the
parameters of the requested operation. Depending on the nature of
the action, this clause can be performed before the right is granted
(i.e., checks on the parameters of the requested operation) or after
the operation is performed (i.e., data filtering). The while clause
contains a condition that is a boolean expression. For the system
to grant the access right to the requester, the condition needs to be
true at the time of policy evaluation. Moreover, if the operation is
granted over a period of time it might be the case that over time
the initial condition does not hold true. By means of the while
clause, we can enforce that the access right will be valid while the
condition holds true.

5.3 Dynamic Behaviour Through Context
One of the main contributions of MOSES compared to other

similar approaches is the use of context for controlling the acti-
vation and deactivation of SPs. In MOSES, each SP is associated
with one or several contexts. A context is defined as a boolean ex-
pression over data collected directly from the device physical sen-
sors (such as GPS, clock, Bluetooth, etc.). A context expression
can also be defined on logical sensors, that is functions that com-
bine raw data from physical sensors to capture specific user be-
haviours, such as detecting when the user is running. For instance,
a “Work” SP that should be activated when the user is perform-
ing job-related activities could be associated the following con-
text expressions: Work@Office{(Time>8) AND (Time<18)

AND (Location=OFFICE)} and Work@Home{(Time>18)
AND (Time<24) AND (Location=HomeOffice)

AND NOT (isWatchingFootballMatch)}.
When a new SP is stored in the Profile Store, the Security Pro-

file Manager writes the SP’s context expressions into the Context
Expression DB. The context expressions are periodically evaluated
by the Context Detector with data obtained by the different sen-
sors. Whenever a context expression evaluates to true, the Context
Detector retrieves the name of the SP associated with the context
expression and notifies the Security Profile Manager for the SP ac-
tivation.
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6. SECURITY PROFILE MANAGEMENT
In this section, we describe how the SPs are managed in MOSES.

The module responsible for SP management is the MOSES Con-
figuration Manager. The internal components of this module are
shown in Figure 4. The Profile Manager App is an application that
allows the user to create an SP and modify existing ones. The ap-
plication also allows the user to define and edit context expressions
that later the user can associate with an SP. The Profile Manger
App stores and retrieves the context expressions to and from the
ContextDef content provider. When a new context definition is
stored in ContextDef, a conflict check is performed to avoid that
the new context definition is overlapping with the context defini-
tions already stored in the ContextDef. As a matter of fact, if two
or more context definitions overlap then it might be the case that
in a given situation more than one SP needs to be activated. We
decided to have here a very restrictive approach by avoiding that
overlapping context definitions can be stored in the ContextDef.
However, as part of our future research direction we will explore
remediation strategies such as prioritising each SP to select the one
with highest priority.

The Profile Register component is responsible for storing and
retrieving the SP definitions. When a new SP is created, the Pro-
file Register stores the SP definition in the Profile Store and it also
registers the context expressions associated with the SP in the Con-
text Expression DB. In this way, the new SP can be activated if the
Context Detector evaluates to true the context expressions associ-
ated with it. In MOSES, each SP has assigned an owner that is
the entity authorised to define and modify the SP. The owner of an
SP can be the user of the device that creates her own SP. However,
a user can deploy on her device SPs defined by third-parties. To
protect the SP from unauthorised modification, we support several
mechanisms for authenticating the SP owners, such as passwords,
certificate, and biometric authentication.

SPs can also be edited/updated remotely. In this case, the re-
quests are handled by the Remote Manager component. Edit/up-
date Requests can be sent through SMS/MMS and/or Bluetooth.
The authentication of remote requests can be performed through
the SP owner’s certificate. When a remote request for an update
is made, first Authenticator verifies the validity of the certificate
of the owner: the certificate includes the identity and the owner’s
public key, all these signed with the key of the certification au-
thority. The trust architecture for remote management of SPs (via
messages sent to the device) is organised as a Public Key Infras-
tructure (PKI). An incoming message containing a new version
of a SP has to come with the certificate of the sender. A certifi-
cate can be transmitted in-band or just as an ID corresponding to a
cached certificate in the CertificateCache. All certificates should
be in the X.509 format. We use standard Java APIs to manipulate
and verify certificates. The CA certificate is embedded in the sys-
tem image at build time. All other certificates are cached in the
/data/moses/certificates directory. The algorithm used
for signature is SHA1 with RSA and a 2048-bit RSA public key.
For all the algorithms, we use the BouncyCastle APIs – as done by
Android itself. After the authentication phase completes success-
fully, the Remote Manager uses the Profile Register component to
store the SP definition in the Profile Store and register the context
expressions in the Context Expression DB.

7. APPLICATION SCENARIO REVISITED
In this appendix, we present the MOSES policies used in appli-

cation scenario presented in Section 3 when MOSES is used.
The listing in Figure 5 shows the MOSES policies defined for the
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Figure 4: MOSES Configuration Manager.

1 WorkP1: allow to GMA ANY on ANY

2 with scope ‘‘Work’’

3 while context.isActual(‘‘WorkOffice’’)

4

5 WorkP2: allow to GMA Send on Internet

6 with scope ‘‘Work’’

7 perform sendOnlyTo(‘‘www.smartinc.com’’)

8

9 WorkP3: allow to GMA Read on ANY

10 with scope ‘‘Work’’

11 while location.isActual(‘‘COMMUTING’’) and

12 !ANY.level(‘‘VerySensitive’’)

Figure 5: The MOSES policies defined in the “Work” SP for

the GroupMoveApp.

GroupMoveApp. In particular, the policy WorkP1 specifies that
the GroupMoveApp (identified in the policies as GMA) can perform
any operations on any work data (line 2) while the user is in her of-
fice (captured in line 3 by the while clause). The policy WorkP2
enforces that the application sends over the Internet work data and
it can connect only to the url specified in the sendOnlyTo action
in the perform clause (line 7). The policy WorkP3 authorises
the GroupMoveApp to read work data while the actual location of
the user is on a train or a bus (line 11) as long as the sensitivity level
of the data is not very high (line 12).

In the following, we discuss how MOSES addresses the require-
ments listed in Section 3. To guarantee that only applications au-
thorised by Wise Inc. are authorised to access work data, as for
requirement R1, the “Work” SP has to contain for each authorised
application MOSES policies similar to WorkP1. MOSES imple-
ments by default a negative authorisation policy meaning that if no
MOSES policy exists for a given application then the system does
not authorise any operations on any resources coming from that ap-
plication. If a MOSES policy exists then the with scope clause
has to be satisfied. This clause makes sure that each authorised ap-
plication accesses data associated with the same SP (by means of
the tagging mechanism). As for the protection of the employee’s
privacy (requirement R3), MOSES policies defined in the “Work”
SP will grant access to applications only to data tagged with the
label “Work”. In this way, any employee’s private data will be
not accessible to any Wise Inc. applications. By means of the
sendOnlyTo action in the perform clause, policies are able to
enforce restrictions on where the data is being sent, thus satisfying
requirement R2. This mechanism is also effective in the event the
GroupMoveApp gets infected by a malware application that tries to
exploit the GroupMoveApp permission to send data over the Inter-
net. The malware could try to open a socket to send the work data
to another server. However, policy WorkP2 will prevent such an
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action from happening because the action on the perform clause
will not be satisfied and the operation will not be permitted (satis-
fying requirement R4). Finally, in MOSES contextual information
plays a fundamental role. Context information is used for control-
ling the activation and deactivation of the SPs. Moreover, as shown
in policies WorkP1 and WorkP3, context can be used for granting
access rights though the evaluation of MOSES policies.

8. MOSES PERFORMANCE EVALUATION
In this section, we will present the results of our testing to mea-

sure the overheads introduced by MOSES. Since the time overhead
is a central concern of user experience, we evaluate the time over-
head introduced by our security extensions compared to a standard
Android system. At the same time, we understand that MOSES
also brings overhead in terms of battery consumption. In the fol-
lowing, we concentrate on evaluating time overhead and battery
consumption of the two main aspects introduced by MOSES: namely
Security Profile switches and enforcement of MOSES policies.

All the experiments were run on the Samsung Nexus S phone
with the 2.3.4 version of Android i.e. stock and modified platforms
are based on the same version. To obtain time overheads we used
a call to System.nanoTime() before and after measured event
and compute the difference between the measured values.

8.1 Security Profile Switch Overhead
We recall here the steps executed during a Security Profile (SP)

switch. Firstly, the Security Profile Manager notifies the App Man-
ager to disable all the applications associated with the current SP.
If applications are still active then the App Manager forces them to
terminate. Secondly, the Security Profile Manger disables the set
of MOSES policies of the current SP that are stored in the Policy
Provider. Thirdly, the set of MOSES policies associated with the
new SP are enabled in the Policy Provider. Finally, the Security
Profile Manager retrieves the list of applications of the new SP and
notifies the App Manager to enable them.

To measure the time overhead of an SP switch, we devised the
following experiment. We created two SPs, namely “Work” and
“Private”. Each SP is associated with 100 MOSES policies and four
applications (that are just dumb activities used to fire up a Linux
process). The test forces the system to execute 100 SP switches.
Between each switch, the four applications are started. We mea-
sured the time that MOSES requires for completing the switch,
namely from the instant the Security Profile Manager notifies the
App Manager to disable the applications till the App Manager en-
ables the applications associated with the new SP. The results are
shown in Figure 6 (where the x-axis represent the 100 switches).
As we can see, except for few outliers, the switching time is less
than one second.

To measure the power consumption for the SP switching, we
executed the same experiment we performed for time measurement
of SP switches. Only this time we executed the switches over a
period of 1 hour (resulting in 2400 SP switches). At the start of
the experiment the battery was at a full charge level. After the
experiment was concluded, the level of the charge dropped to 77%.
This means each SP switch consumes 0.009% of a full battery.

8.2 MOSES Policy Enforcement Overhead
The second set of experiments aim at measuring the overhead in

terms of time and battery consumption of the policy enforcement in
MOSES. MOSES policies are enforced when applications request
access to data. To measure the time overhead, we run an application
that performed 100 read operations on GPS data. We first execute
the application on stock Android, to measure the average time of a
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Figure 6: Time for Security Profile switching.

single GPS read operation. Then we execute the same application,
but this time MOSES is activated. To be able to access the GPS
data, the MOSES policy TestP1, shown in Figure 7 is enabled in
the Policy Provider in the “Private” SP.

1 TestP1: allow to TestApp Read on GPS

2 with scope ‘‘Private’’

Figure 7: The MOSES policy defined for the TestApp in “Pri-

vate” SP to read the GPS data.

We run several tests with MOSES enabled, each time increasing
the number of MOSES policies present in the Policy Provider from
10 to 100. However, in each configuration we make sure that the
TestP1 is always the last to be evaluated resulting in the worst
case scenario. The result are shown in Table 1. As we can see, the
average time for accessing the data is around 1 millisecond in stock
Android. When MOSES is enabled, the average time for the read
operation increases from 3 (in the case of only 10 MOSES policies)
to almost 10 milliseconds (in the case of 100 MOSES policies). We
can conclude that the time overhead introduced by MOSES does
not affect the user’s experience.

Configuration Average Time (ms)

Stock Android 1.071

MOSES-10 3.134

MOSES-20 3.813

MOSES-30 4.970

MOSES-40 5.615

MOSES-50 6.122

MOSES-60 7.205
MOSES-70 7.613

MOSES-80 7.621

MOSES-90 8.451

MOSES-100 9.658

Table 1: Performance of GPS reading operations with stock

Android and with the “Private” SP activated.

The last set of experiments focus on the impact that the enforce-
ment of MOSES policies has on the battery consumption. In order
to have a tangible battery consumption we run the following exper-
iment. We execute on stock Android the TestApp application to
perform GPS read operations every 10 seconds over a period of 5
hours. At the start of the experiment, the battery was fully charged.
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At the end of the 5 hours the percentage drop was 13%. After
recharging the battery, we run again the same experiment, this time
with the MOSES-100 configuration enabled (100 MOSES policies
in the Policy Provider with the TestP1 policy at the bottom). At
the end of the 5 hours, the percentage drop was 17%. It should
be noted that executing read operations every 10 second results in
1800 reads over a period of 5 hours. The percentage of battery con-
sumption for a single operation in stock Android is 0.007% while
with the MOSES enforcement mechanism it is around 0.010%.

From the above analysis, we can conclude that the overhead in-
troduced in terms of time and battery consumption is negligible.

9. RELATED WORK
In this section, we provide an overview of the related work in

the area, which is smartphone security: with focus on the Android
system. In particular, in Section 9.1, we describe other research
efforts in providing enhanced security mechanisms to the Android
platform. In Section 9.2 we discuss solutions that could be used
to solve (even though: only to some extent, partially, and in a non
efficient way), the problem we address.

9.1 Security Approaches
In Android, at installation time users grant applications the per-

missions requested in the manifest file. Android supports an all-
or-nothing approach, meaning that the user has to either grant all
the permissions specified in the manifest or abort the installation of
the application. Moreover, once an application is installed, the only
way to revoke a permission is to completely uninstall the applica-
tion.

To circumvent this coarse-grained approach, several solutions
have been proposed to allow the user to manage in a more fine-
grained way application permissions even during runtime. Saint
[24] is a policy-based application management system that con-
trols application permissions at install time and during runtime.
Saint aims at controlling how applications interact with each other.
Clearly, Saint is not aimed at solving the problems identified in our
scenario. As a matter of fact, Saint policies can help in ensuring that
applications authorised by the company are not invoked by user’s
applications (partially addressing requirement R1). However, Saint
policies cannot prevent a user’s application from accessing sensi-
tive company data because there is no mechanism that facilitates
distinguishing between private and work data. Finally in Saint, ac-
cess rights cannot be granted on the basis of the actual context of
the user since there is no way of defining context in the Saint poli-
cies.

Context information plays a pivotal role in the approaches pre-
sented by Nauman et al. [23] and Conti et al. [13]. Here, context
is used to trigger rules at runtime, that, to some extent can also be
used to enforce security properties. Bai et al. [8] has further ex-
tended this approach to support a UCON security model. Although
these approaches can satisfy our requirement R5, none of them are
able to guarantee that only company-authorised applications access
company data (R1), to control the dissemination of the data (R2),
protect the privacy of the users (R3), and protect the system from
malicious spreading of permissions (R4).

More recent papers [9, 31] concentrate on the protection of the
user’s private data (satisfying only R3). MockDroid [9] is a system
which can limit the access of the installed applications to the data
by filtering out information. For instance, an application querying
the contacts’ provider may receive no results even if the provider
is not empty. This approach is more refined in TISSA [31] where
users are able to define the accuracy level of the information re-
vealed to the application by means of privacy levels. In TISSA, it is

possible to define four privacy levels: trusted, empty, anonymised

or bogus. For instance, anonymised means that the information
is somehow anonymised while Bogus means that fake information
is forged for the requesting application. Unfortunately, both the
approaches do not solve the problem of privilege spreading. For
instance, if an application that has a trusted privacy level (thus ac-
cessing real data) is infected with malware then the malware can
access the real data as well, clearly violating requirement R4.

TaintDroid [17] proposes dynamic taint analysis to control how
data flows between applications. TaintDroid is capable of tracking
sources of specific tainted data. In TaintDroid, taints are statically
associated with predefined data sources, such as the contact book,
SMS messages, the phone number, the device identifier (IMEI), etc.
TaintDroid limits the flow of tainted data by tracking the taints in
the outbound network connections (satisfying requirements R2 and
R4). However, TaintDroid is not capable of enforcing separation of
operation modes. For instance, TaintDroid would treat private and
work contacts as the same type (because they are tainted with the
same taint) applying the same policy. Therefore it is not possible to
have in TaintDroid corporate applications that can only access cor-
porate data. The same holds true for private applications (thus vio-
lating requirements R1 and R3). Similar conclusions can be drawn
for Paranoid Android [26]. Paranoid Android proposes tainting of
data for runtime checks. In Paranoid Android security analysis is
executed by a trusted remote server, which hosts the replicas of
smart phones in virtual environments. However, this approach has
a severe impact on the device performance since execution traces
have to be continuously sent to the remote servers. Finally, both
approaches do not consider contextual information for switching
between different operation modes and for enforcing context-based
security policies (violating requirement R5).

QUIRE [15] provides a lightweight provenance system that pre-
vents the confused deputy attacks where a malicious application
abuses the interfaces of a trusted application to perform an unau-
thorised operation (R4). QUIRE addresses the problem by tracing
RPC chains to establish if all callers in the chain have the neces-
sary privileges to execute the call. Tracing is realised by modi-
fying the Android native RPCs. This however has the drawback
that QUIRE’s approach is not transparent to application develop-
ers. They need to rewrite their existing applications. Furthermore,
QUIRE does not support separation of operation modes, meaning
that applications can access both corporate and private data, in vio-
lation of requirements R1 and R3.

A solution similar to ours is AppFence [20]. By using Taint-
Droid’s tainting capability, AppFence provides additional mecha-
nisms to shadow sensitive data and to block exfiltration, that is the
unauthorised leakage of data via network access (R2). Shadowing
allows only data anonymisation and does not support other transfor-
mations over sensitive data. In principle, AppFence could be mod-
ified to support separation of operation modes as in our approach.
However, there are no means for capturing context information to
be used for enabling/disabling different operation modes (violating
R5).

XManDroid [11] performs runtime monitoring and analysis of
communications between applications by monitoring the ICC traf-
fic and validates whether an ICC call can potentially lead to a spread-
ing of privileges according to a desired system policy. This can be
used to avoid that malware code exploits the privileges of other ap-
plications (satisfying R4) to perform unauthorised operations. The
main limitation of this approach is that it cannot be used to control
communication channels established outside the ICC framework,
such as Internet communications (in violation of requirement R2).
The main shortcoming of XManDroid is that it does not support
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separation of operation modes and context information to drive the
enforcement of policies (in contrast with requirements R1, R3, and
R5).

YAASE [27] is an Android security extension aiming at protect-
ing the Android users from both confuse deputy and privilege es-
calation attacks. YAASE uses the data tainting capability of Taint-
Droid to limit application access to the resources declared in the
manifest file. Similarly to XManDroid, YAASE is able to avoid that
malware exploit other applications’ privileges to perform unautho-
rised access (satisfying R4). In addition to this, YAASE is also able
to control data flow outside the ICC framework (satisfying R2).
However, YAASE is not designed for separating operation modes
and to use context information to adapt the enforcement of policies
(violating requirements R1, R3, and R5).

Finally we come to TrustDroid [12]. TrustDroid is an Android
security framework that most closely matches MOSES security en-
hancements. TrustDroid provides separation of operation modes by
“colouring” applications and data. The underlying security policy
is that applications can access only data of the same colours. The
separation of operation modes is supported by representing an op-
eration mode with a colour, satisfying requirements R1, R2, and
R3. Applications are statically assigned to a colour at installation
time. The assignment of colours to data is somehow very con-
strained: when an application writes data then the data is automat-
ically assigned the same colour of the application. TrustDroid sup-
ports basic context-based policies, such as preventing Internet ac-
cess by private applications while an employee is connected to the
company’s network (partially satisfying R5). One of the main lim-
itations in TrustDroid is that the security policies are very coarse-
grained. Applications can read and write data of the same colour.
It is not possible to enforce more fine-grained policies where some
applications can only read data, while others can have a full set of
rights. For instance, if we consider a scenario of micro-payments:
only one application should be able to both read and modify the
actual balance, while all the other applications should only be able
to read the balance. Finally, TrustDroid does not perform extra
checks to avoid malware that is able to use legitimate applications’
permissions to send data over the internet to an adversary server (in
violation of requirement R4).

9.2 Heavy separation of Operation Modes
Virtualisation provides environments that are isolated from each

other, and that are indistinguishable from the “bare” hardware, from
the OS point of view. The hypervisor is responsible for guarantee-
ing such isolation and for coordinating the activities of the virtual
machines. Hence, at the same time virtualisation can: (i) increase
security, while (ii) reducing the cost of deployment of applications
(the hardware is shared in a secure way).

Similar security motivations, together with a higher usability (see
also the motivation of our work in Section 1.1) is pushing virtuali-
sation techniques into the smartphone scenario. In fact, several vir-
tualisation solutions have been already proposed for smartphones
[19], and they have been also already considered from security
point of view: e.g. with their proposal as a tool for rootkit de-
tection [10]. However, virtualisation does not come for free, and it
is a particular demanding task for resource-constrained devices like
smartphones (e.g. in terms of battery) [30]. In particular, in [30] the
authors evaluate the overhead due to the virtualisation on a smart-
phone by comparing (using typical smartphone apps): (i) L4Linux
(a para-virtualised Linux on top of L4 microkernel) with (ii) the na-
tive Linux performance. The authors conclude that while in some
specific cases the overhead might be acceptable in terms of delay,
it is also “use case dependent” (system call triggering more kernel

activities has worst performances). Furthermore, for some system
calls it has been observed an execution time is 30 times slower than
the one on native Linux.

Virtualisation techniques have been recently also adapted to run a
mainstream OS like Android. For example, the L4Android [21, 16]
project combined L4Linux and Google modifications of the Linux
kernel to enable a smartphone to run Android on top of a microker-
nel. However, even in this scenario, the pros and cons are inherited
from the ones of virtualisation. In fact, while virtualisation is the
perfect solution for our requirements R1 and R3, it cannot address
requirement R2 (where isolation is not enough to describe the con-
straints of the operation mode of an application), it cannot address
requirement R4 (isolation does not avoid confused deputy attack
leveraged via applications belonging to the same environment), and
it does not address requirement R5 (the actual environment running
at a given time cannot be automatically defined via a context spec-
ification).

The proposal of systems like MOSES are hence motivated: from
one side, by the need of virtualisation features on smartphones;
from the other side, by the need to have a virtualisation that is effi-
cient in terms of time, and energy overhead—which are still main
issues for resource-constrained devices like smartphones.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented MOSES: a policy-based frame-

work for Android that enables the separation and isolation of appli-
cations and data. Crucial in MOSES is the notion of security pro-
files. Each security profile represents a unit of isolation enforcing
that applications can only access data of the same security profile.
One of the innovative aspects introduced by MOSES is the dynamic
switching from one security profile to another. Through the smart-
phones sensors, MOSES is able to detect changes in context and
to dynamically switch to the security profile associated with the
current context.

One of our main concerns was the impact on the smartphone
user’s experience when MOSES is used. In this respect, we imple-
mented MOSES and analysed the overhead in terms of time and
battery consumption introduced by MOSES. The results of our ex-
periments show that MOSES overhead is minimal and not notice-
able to the end user.

As future work, we are currently expanding the functionality of
MOSES to enable the protection of data within a given security
profile in case the user loses the smartphone. One possibility is
to introduce encryption capabilities linked to the user’s identity.
Another option is to use the Mobile Trusted Module to validate
the current context of the smartphone to decrypt the data only in
a trusted environment. Another direction of future research is the
distribution of security profiles and security policies. We are aware
that the average smartphone user is not IT-minded. Specifying se-
curity profiles and policies could be a daunting task for most of the
normal users. Our idea is to have third parties to create security
profiles with different levels of security and make them available
on the Android Market. Users can then install the security profile
that matches their security needs and further customise it if needed.
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