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ABSTRACT
Modern cloud-based IoT services comprise an integrator service
and several device vendor services. The vendor services enable
users to remotely control their devices, while the integrator serves
as a central intermediary, offering a unified interface for managing
devices from different vendors. Although such a model is quite
beneficial for IoT services to evolve quickly, it also creates a serious
privacy concern: the vendor and integrator services observe all
interactions between users and devices. Toward this, we propose
Mohito, a privacy-preserving IoT system that hides such interac-
tions from both the integrator and the vendors. In Mohito, we
protect both the interaction data and the metadata, so that no one
learns which user is communicating with which device. By utilizing
oblivious key-value storage as a primitive and leveraging the unique
communication graph of IoT services, we build a scalable protocol
specialized in handling large concurrent traffic, a common demand
in IoT systems. Our evaluation shows thatMohito can achieve up
to 600× more throughput than the state-of-the-art general-purpose
systems that provide similar security guarantees.

KEYWORDS
Internet of Things, privacy, metadata protection, anonymous com-
munication

1 INTRODUCTION
IoT devices, ranging from smart home appliances, such as ther-
mostats and security camera systems, to fitness trackers and med-
ical equipment, have become integral to the daily lives of many
individuals. These IoT devices are connected to backend servers op-
erated by their manufacturing vendors, enabling users to remotely
interact with them through smartphones or browsers. Such inter-
actions however allow vendors to accumulate extensive data about
the activities of their devices and users.

Studies [25, 60] have shown that users are generally concerned
about the privacy implications of data collected from IoT devices,
as it can be utilized to infer sensitive aspects of users’ lives. For
example, health and fitness trackers can record users’ physical
activities or sleep patterns, and may even expose details about users’
overall health, daily routines, and potential medical conditions. The
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privacy risks associated with IoT data call for a robust privacy
protection mechanism that hides interactions between users and
devices from vendor servers.

To enhance the data privacy of IoT systems, recent works [22, 24]
have focused on encrypting data communicated through the sys-
tems. However, the mere existence of communication can still pose
privacy risks. Such metadata associated with communications is of-
ten considered a viable means for surveillance [47], and encrypted
messaging services like Signal are adding multiple layers of meta-
data protection to conceal who is communicating with whom for
privacy-conscious users [1]. This problem is even more pronounced
in IoT systems, as metadata can be used to infer the actual data.
Consider a scenario where the server sees a message from a user
to a smart door lock. Even if it does not know the content of the
message, it may still deduce what the user is sending, as the types
of the command are typically limited to locking and unlocking. In-
deed, researchers [17, 49] and government regulations [9, 10] have
warned that IoT metadata can be utilized to infer user data and
therefore must be protected. For example, the Office of the Privacy
Commissioner of Canada issued guidance to IoT vendors stating
that, to adhere to Canada’s federal privacy law, vendors should
categorize metadata as personal information for privacy protection
purposes [9].

Thus a major challenge in designing privacy protection mech-
anisms for IoT systems is metadata privacy. Although a long line
of works has proposed anonymous communication systems that
provide metadata privacy [37–39, 51–53], their system model and
assumptions do not work for the IoT setting. These general-purpose
systems typically assume that servers are pairwise connected, but
in modern IoT systems, vendors do not share a direct line of commu-
nication. Instead, they all connect to a centralized service known as
the integrator service. Integrator services, such as AmazonAlexa [2],
Google Home [5], and IFTTT [6], are cloud-based IoT platforms
that serve as a bridge between users and vendors by collecting
commands from users and forwarding these commands to the cor-
responding vendors. Integrators play an essential role in modern
IoT ecosystems, as they unify the heterogeneous communication
interfaces of different vendors and streamline device management.
Therefore, a privacy-preserving IoT system should abide by the
communication structure that centers around the integrator. This
structure presents challenges for hiding metadata, as we must en-
sure that the integrator can relay messages between users and
vendors efficiently and accurately, while never allowing it to learn
the identities of message senders and receivers.
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In addition, an IoT system typically supports millions of devices
deployed worldwide and generates a significant amount of concur-
rent traffic. This extensive data flow requires an efficient protocol
that emphasizes high throughput. However, the cryptographic prim-
itives used in many metadata-hiding systems are not designed to
handle messages in large batches [27, 30, 32], making them less
compatible with the demands of the IoT setting. Furthermore, the
majority of such IoT traffic is generally caused by devices belonging
to a few large vendors. The number of devices operated by smaller
vendors is only a fraction of what larger vendors have [44]. We
should assume that these smaller vendors only have the infras-
tructure capable of supporting traffic for their own devices. Many
general-purpose metadata-hiding protocols split the system pro-
cessing load evenly across all servers; if we were to apply such
protocols in an IoT system, it would overburden smaller vendors.
Hence, one must ensure that a vendor’s operational cost scales with
its number of devices.

Motivated by the above challenges, we proposeMohito, a privacy-
preserving IoT system that hides user/device interaction metadata
from vendors and from the integrator service. In Mohito, users
transmit commands to devices through the IoT cloud servers, and
devices respond with status updates. In addition to preventing
the IoT servers from deciphering the contents of commands or re-
sponses,Mohito ensures they do not learn the metadata, i.e., which
user is interacting with which device. Specifically, the integrator
does not know the destination of each user’s command, while the
vendor does not know the source of the command each device
receives (and vice versa for responses).

Mohito achieves high throughput by leveraging the centralized
structure of IoT systems. At a high level, we organize commu-
nication into rounds and, in each round, the integrator gathers
commands from users into a batch. Then the integrator utilizes an
oblivious key-value store (OKVS) [34, 45], a cryptographic primitive
that allows efficient and private batch-encodings without decoders
learning which key-value pairs are encoded. For each batch of com-
mands, the integrator processes and encodes them into several
OKVSs based on the destination vendor of each command. These
OKVSs are forwarded to the corresponding vendor, which decodes
the commands and sends them to the target devices. Our protocol
ensures that the vendor does not learn the source of the commands
they have decoded.

Mohito also protects metadata information from an honest-but-
curious integrator. We achieve this by first ensuring our privacy
guarantee holds in a single round, and then we prevent cross-round
attacks. For the first step, Mohito instructs vendors to shuffle com-
mands for the integrator. By outsourcing the shuffling process to a
vendor, we ensure that, within each round, the integrator cannot
trace a command back to its user.

Like other communication systems, IoT systems are susceptible
to cross-round attacks, also known as intersection attacks. In an
intersection attack, the servers observe traffic patterns overmultiple
rounds of communication to infer relationships between message
senders and receivers [28, 36, 42]. Defending against intersection
attacks is integral to protecting metadata. Specifically in an IoT
system, the integrator observes two pieces of information: (1) which
users send a command and (2) howmany commands are sent to each
vendor. By recording this information over multiple rounds, the

integrator can infer which users communicate with which vendors,
breaking our privacy goal. Therefore, in Mohito, when a vendor
shuffles the commands, it also injects a number of fake commands
to hide the traffic pattern. We design the injection protocol in a way
that the integrator cannot learn how many commands each vendor
actually receives in each round, even if the integrator controls a
small number of users and devices.

We implement and benchmark Mohito. As our main perfor-
mance goal is to handle highly concurrent traffic, we are primar-
ily interested in the system’s throughput. We estimate that our
proof-of-concept implementation can handle 24,000 commands per
second. For comparison, Express [32], the state-of-the-art general-
purpose metadata-hiding system, can handle only 40 messages per
second under similar settings.

In sum, we offer the following contributions:

• We derive the desired properties of a privacy-preserving
IoT system, in terms of security and real-world considera-
tions for efficiency, which demands a different set of design
requirements than general-purpose metadata-hiding com-
munication systems.
• Based on these properties, we design Mohito, a metadata-
hiding communication system tailored for privacy-preserving
IoT interactions.
• We build a proof-of-concept implementation of Mohito and
evaluate its performance to showMohito’s high throughput.

2 BACKGROUND & MOTIVATION
2.1 IoT Ecosystems and Privacy Concerns
The widespread adoption of IoT devices has led users to own multi-
ple devices from various manufacturing vendors, each specializing
in a particular product category or functionality. For example, a user
of smart home devices may have bought a smart light bulb from
Phillips Hue, a smart thermostat from Nest, and then a smart oven
from LG. Such diverse device provenance presents challenges in
terms of device management, interoperability, and user experience
To address these challenges, users often leverage integrator services.
An integrator service – e.g., Amazon Alexa, Google Home, IFTTT –
is a centralized cloud platform that allows users to remotely inter-
act with their devices through a unified interface, regardless of the
device vendor and communication protocol. Therefore, integrator
services have become an essential part of modern IoT ecosystems.
Fig. 1 depicts the dataflow in these systems.

Privacy concerns. Whenever users remotely interact with their
IoT devices, they inadvertently expose their activity data to the
corresponding vendors. For example, a vendor that manufactures
smart home security systems can collect the entry and exit times
of every person in the user’s home. Due to the nature of many
IoT devices, such information can be sensitive, as it can reveal de-
tails of the user’s lifestyle and habits, including sleeping patterns,
child behaviors, medical information, and sexual activities. There-
fore, many users are worried about the privacy implications of IoT
devices [25, 60].

Integrator services, while providing many benefits to users, pose
even greater privacy concerns. To allow unified access to devices, in-
tegrator services require device permissions. Users typically provide

2



Scalable Metadata-Hiding for Privacy-Preserving IoT Systems Proceedings on Privacy Enhancing Technologies YYYY(X)

Users

Integrator Vendors

DevicesIoT Cloud Services

Figure 1: Overview of IoT Ecosystem. Users communicate
with an integrator, which communicates with various ven-
dors. Each vendor communicates with its own devices.

permissions via login credentials, authorizing integrator services
to interact with devices on their behalf. Then, when a user issues a
command to a device through the integrator service, the integrator
service uses its permissions to forward the command to the ven-
dor associated with the device. Therefore, the integrator service
gains unfettered access to all of a user’s IoT activities, allowing it to
accumulate a more comprehensive view of the user’s personal life.

2.2 Towards a Privacy-Preserving IoT System
The above privacy concerns motivate the design of IoT systems that
provide quality user experience while also preserving user privacy.
In a privacy-preserving IoT system, neither the vendor nor the
integrator should learn of the user’s interaction with their devices.
There are four main challenges in designing such system.

Metadata-hiding. Privacy protection for metadata is crucial for
many types of communication systems [1, 46], and it holds the same
importance for IoT systems [9, 10, 17, 49]. It often does not suffice
to simply encrypt messages; the mere existence of messages from
a user to a vendor can compromise privacy. Consider a scenario
where a user owns a smart door lock manufactured by August. The
system could try to hide the user’s interaction data with end-to-end
encryption. Nevertheless, the integrator service can still observe
that the user sends a message to August. In this case, August – like
many other IoT vendors – manufactures only one type of device,
so the integrator implicitly knows the user is communicating with
a smart lock. By viewing the existence of a message in context (e.g.,
the user sends the command in the evening), the integrator service
can piece together troubling information about the user (e.g., the
user is likely unlocking their door as they come home from work).
Therefore, such metadata information can lead to privacy leakage.

Scalability. A key characteristic of IoT systems is the scale of data.
With millions of IoT devices deployed worldwide, they collectively
generate a significant amount of traffic every second. Therefore, it
is crucial for our system to focus on scalability first to accommodate
the continuous growth of devices in the IoT landscape. We note
that there are many works [27, 32] on anonymous communication

systems with similar security goals, but they mostly focus on single
message performance, whereas we need to handle large volumes
of concurrent messages and achieve high throughput.

Load-balancing. In many anonymous communication systems,
all server nodes are assumed to have similar processing powers.
However, we cannot make the same assumption for vendors in
IoT systems. Based on the dataset in [44], the top 20 vendors in
IFTTT on average have 3,130 times more connected devices than
the bottom 20, which means that, if we were to split the processing
load equally, smaller vendors may not have the resources prepared
to handle the overhead caused by larger vendors’ traffic. Therefore,
we need to ensure the overhead of each vendor scales proportionally
to the number of devices it owns.

On-device operations. The computations a device can execute
are often limited by factors such as the device’s battery life and
computational capacity. Therefore, we should ensure that the on-
device overhead remains small and does not scale with the total
number of users or devices in the system.

3 DESIGNING A PRIVACY-PRESERVING IOT
SYSTEM

We presentMohito, a clean-slate design for privacy-preserving sys-
tems tailored to the IoT setting. To ensureMohito can be adopted by
existing IoT services, we adhere to these platforms’ communication
structure and API design when designingMohito. In this section,
we describeMohito’s system model as well as our threat model and
security goals.

3.1 System Model
Following the design of today’s commercial IoT ecosystems [2, 5, 6],
we model the system as a set of IoT cloud services connected to
various users and IoT devices (as shown in Fig. 1). The cloud services
consist of a single integrator service and many device vendors.

Vendor. A device vendor, such as LG and Philips Hue, provisions
IoT devices and periodically communicates with its devices. In this
paper, we use this term to denote the backend server of a vendor.

Integrator. An integrator service, such as Alexa and IFTTT, is
a cloud platform authenticated to connect to various vendors and
issue commands on behalf of users. All communications between
users and vendors pass through the integrator.

User. A user owns the devices in their home purchased from
different vendors and controls those devices using an integrator-
provided interface (e.g. a web interface or phone app). For simplicity,
we consider the user and the interface as a single entity. We do not
expect users to be always online; they only participate when they
wish to send a command.

Device. Each device is owned by a single user and must be set
up by the user before it comes online. Once set up, the device
starts communicating with its vendor. We assume each device has
a globally unique id, such as a MAC address, that is also known to
the device’s user and vendor (but not to the integrator).

We model the interaction between the user and its device as a
single operation: the user first sends a command to its device and
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then receives a status update from the device as a response. This
interaction is achieved as follows: the user sends the integrator a
message, which is forwarded to the appropriate vendor and then the
device; similarly, the device’s response goes through the vendor first,
then the integrator, and finally the user. We believe this operation
is generic enough to cover all basic functionalities in an IoT system.
For example, if the user needs to check the current state of a device,
they can issue a “read” command that tells the device to report its
state in the status update response.

We do not allow communication between vendors. It is not real-
istic to assume that each vendor knows all other vendors, nor that a
particular vendor should build infrastructure compatible with other
vendors. This aligns with the practices of existing IoT platforms,
as none of them requires a vendor to directly communicate with
another vendor.

We model the system to proceed in a round-based fashion. Each
round takes a fixed amount of time, during which the integrator
gathers all messages from users participating in the current round
and delivers them to the corresponding vendor, before advancing
to the next round. This round-based approach closely aligns with
the API design of today’s commercial integrator services, such as
IFTTT [11], which requires vendors to process messages in batches.

3.2 Threat Model
In our threat model, IoT services (i.e., the integrator and vendors)
are honest-but-curious,1but users and devices can be malicious. In
practice, IoT services are regulated such that they cannot deviate
arbitrarily from a protocol. Even in cases where these services are
attacked by an adversary, the attack often causes data breaches,
rather than ceding control of the service. Users and devices are more
vulnerable, and they might be fully compromised by an adversary.

Non-colluding services. Given that many vendors may be owned
by the same company, we allow collusion among multiple vendors.
However, we do assume that the integrator remains an independent
platform and does not collude with any of the vendors. This is a
common model adopted by many related security works on IoT
integrators [13, 21, 22, 24, 33, 56, 58], due to the legal restrictions
on sharing user data between different IoT services [4] and the
low likelihood of an adversary successfully compromising two IoT
services simultaneously.

In addition, the integrator or a vendor may register accounts
with other vendors or buy devices from them to gain information
about its competitors. Therefore, we assume some users and devices
may collude with an IoT service. However, we assume that these
colluding users and devices do not add more than 𝛿 messages (a
parameter for our construction, see Section 5.2 for more on this)
within a round.

Transparent communication. We assume that when two parties
communicate, they learn each other’s identity (through the IP ad-
dress or as a username due to an authentication process). When a
user contacts the integrator (or any IoT service), the integrator (or
the IoT service) learns some identity of the user. We believe this
assumption is necessary, as real-world services often rely on such

1While we adopt the honest-but-curious model, we discuss how Mohito’s protocol can
be upgraded to the malicious setting in Section 8.

identity to implement rate limiting or to prevent denial-of-service
attacks [3, 7]. Note that other information, such as how many ven-
dors the user uses, is not revealed to the integrator; otherwise, it
trivially learns the destination of messages from users who only
have one device/vendor.

Message size. Prior works have shown that the size of IoT mes-
sages can be used to infer device activities [18]. To prevent this, mes-
sages can be padded to some fixed size. Padding messages efficiently
is an important, albeit orthogonal, research problem [15, 16, 18].
In this work, we assume that messages generated by users and
devices are padded to some fixed length, such that it is not possible
to identify a user or device based on the size of a message.

Public key infrastructure. We assume IoT services exist within
a public key infrastructure. Each service has its own key pair, and
anyone can verify the public key of each service.

3.3 Security Goals
Our goal is to support privacy-preserving IoT interactions such
that IoT services learn minimal information about users. Com-
mands/responses should be hidden, and IoT services should not
learn which user communicates with which device. In more detail,
our system provides the following properties:

Data privacy. No party – other than the intended recipient –
learns the content of a particular message.

Metadata privacy. We hide the communication pattern between
users and devices from IoT services. No IoT services should be able
to learn which user is interacting with which device. Specifically,
• For the integrator, each time it receives a message from a
non-colluding user, it should not learn which vendor is the
target of this message.
• For a vendor, it should not learn which non-colluding devices
receive commands in each round. We enforce this require-
ment because vendors already know the identities of their
devices (per our threat model).

The metadata privacy must hold even when an IoT service can
observe communications for an arbitrary number of rounds.

Data integrity. Although we assume IoT services are honest-but-
curious, a malicious user/device can attempt to corrupt the integrity
of messages intended for other users/devices. We ensure that the
message sent by a benign user/device cannot be tampered with by
another user/device.

We provide a more formal definition in Appendix C.

3.4 Potential Solutions and Challenges
We examine alternative solutions to design a privacy-preserving IoT
system and analyze why they fail to tailor to the specific demands
of IoT ecosystems.

Local Protocols. In designingMohito, we prioritize compatibility
with current industry practices to ensure better integration with
existing IoT infrastructures. While local protocols that use direct
user-to-device communication within the user’s home network
may provide better efficiency, they do not align with the prevalent
operating models of IoT systems. As discussed in Section 2.1, the
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integrator functioning as a cloud-based service has become an
indispensable part of today’s IoT ecosystem, because it enhances
user experiences by allowing remote device management through a
centralized interface. Therefore, to facilitate easier adoptability with
vendors that are already following this communication paradigm,
we need to assume a cloud-based system model.

Mixnet-based Protocols. General-purpose anonymous communi-
cation protocols that rely on mix-nets [37, 38, 53] do not satisfy
some of the key requirements in the IoT setting outlined in Sec-
tion 2. First, all participating servers in a mix-net are expected to
communicate with each other directly, whereas communications
in IoT systems flow through a central integrator and peer-to-peer
interactions between vendors are not practical. Second, mix-nets as-
sume a uniform load distribution across all servers, but IoT systems
are characterized by a diversity of vendors with vastly different
levels of computational resources. Finally, mix-net protocols can
introduce high latency due to the multiple rounds of mixing re-
quired to anonymize messages, which contradicts the low-latency
requirement in IoT environments.

PIR-based Protocols. Some anonymous systems based on Private
Information Retrieval (PIR), such as Riposte [27] and Express [32],
can be adapted to fit within the IoT server structure. However, these
systems are often designed with a different set of functionality re-
quirements, some of which (such as message persistence) are not
applicable in the IoT context and therefore can introduce unnec-
essary overheads. In particular, to satisfy these different require-
ments, these systems utilize underlying cryptographic primitives
like distributed point function [35] that are not optimized for batch
processing of messages. Consequently, their application in IoT sys-
tems, which is characterized by a large volume of concurrent traffic,
can lead to performance bottlenecks.

4 OVERVIEW OFMohito ARCHITECTURE
We now start delving into the design ofMohito. First in this section,
we outline the building blocks of Mohito that allow it to achieve
our security goals within a single round. Then we show how to
extend the protocol to prevent cross-round attacks in Section 5 and
finally provide the full detailed protocol in Section 6.

One of the fundamental building blocks ofMohito is an Obliv-
ious Key-Value Store (OKVS) [34]. Section 4.1 reviews the OKVS
primitive and discusses how it helps protect metadata in our system.
However, using OKVS alone cannot satisfy our design goals. In the
following two subsections, we discuss how we can overcome the
drawbacks of a naïve OKVS approach by incorporating shuffling
(Section 4.2) and ephemeral ids (Section 4.3).

For simplicity, we focus only on the part of the protocol where
users send commands to devices and omit the part where devices
send responses back, since the latter can generally be achieved
by reversing the process of the former. We detail the latter in Sec-
tion 6.3.

4.1 Oblivious Key-Value Stores
Background. A key-value store is an encoding of a set of key-value

pairs, and is defined by two algorithms:

• Encode takes as input a set of key-value pairs {(𝑘1, 𝜈1), . . . ,
(𝑘, 𝜈𝑛)} and outputs a store 𝑆 ;
• Decode takes as input a store 𝑆 and a key 𝑘 , and outputs a
value 𝜈 .

A key-value store is oblivious if it hides the keys when the values are
random. When invokingDecode on some key 𝑘𝑖 used to generate 𝑆 ,
the result is the corresponding 𝜈𝑖 ; for any other key, the result is a
value that appears to be random. Therefore, an observer seeing calls
to Decode cannot tell whether a particular key is in 𝑆 or not. More
formally, consider two OKVS structures encoding random values
where the first structure has keys 𝒦0 and the second has keys 𝒦1.
The key-value store is oblivious if it is infeasible to distinguish
these two structures.

One classic OKVS construction uses a polynomial 𝑃 satisfying
𝑃 (𝑘𝑖 ) = 𝜈𝑖 . The coefficients of 𝑃 represent the encoded values, and
we can decode key 𝑘 by simply evaluating 𝑃 (𝑘). However, this
approach is computationally expensive, as encoding and (batch)
decoding of 𝑛 items require polynomial interpolation, requiring
𝑂 (𝑛 log2 𝑛) operations. Recent works [34, 45] construct cuckoo-
hash-table-based OKVSs that achieve encoding and decoding at
cost 𝑂 (𝑛𝜆), where 𝜆 is the security parameter.

Strawman approach with OKVS. We describe a naïve design for a
metadata-hiding IoT system based on OKVS. We assume the system
proceeds in a round-based fashion. In each round:

(1) Each user who wishes to send a command to their device
encrypts the command with a key shared only between the
user and the device. The user sends message𝑚 = (𝑖𝑑, cmd)
to the integrator, where 𝑖𝑑 is the device id and cmd is the
encrypted command.

(2) The integrator, after collecting messages𝑚1, . . . ,𝑚𝑛 from
users participating in this round, encodes them into an OKVS
𝑆 , where device ids are keys and encrypted commands are
values. The integrator sends 𝑆 to every vendor.

(3) Each vendor tries to decode a cmd from 𝑆 for each of the
vendor’s devices using the device id 𝑖𝑑 as key, and forwards
the decoding result to the device.

(4) Each recipient device decrypts its command.

It is easy to see that this strawman approach satisfies the metadata
privacy property, as long as the device ids are randomly chosen and
cannot be traced back to their vendors. From the integrator’s view, it
cannot learnwhich user’s message ends up inwhich vendor because
the same OKVS is sent to every vendor. From the vendor’s view, it
cannot learn which devices actually have incoming commands due
to the obliviousness property of OKVS, so it calls Decode on every
of its device ids; hence, devices that have no incoming command
will still receive a message from their vendor, but this message will
appear random to the vendor and indistinguishable from the real
messages. In addition, this approach is efficient on the vendors’
side. Each vendor only needs to make 𝑛 Decode calls, where 𝑛 is
the number of devices owned by that vendor. So its computational
cost only scales with 𝑛 and is not affected by other vendors’ devices
in the systems.

However, this strawman approach comes with a huge communi-
cation cost. Indeed, each vendor receives an OKVS that encodes all
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commands, effectively multiplying the amount of traffic in the sys-
tem by the number of vendors and making the bandwidth overhead
unbearable. Small vendors that own dozens of devices would still
receive an OKVS containing millions of commands in every round.
Still, this OKVS-based strawman serves as an excellent starting
point to build a privacy-preserving IoT system, and we show how
to extend this approach to design Mohito, which retains the same
security but with significantly improved efficiency.

4.2 Chosen Vendor as Shuffler
To make the protocol more practical, we must ensure that each
vendor’s cost scales only with the number of commands intended
for this vendor, not the total number of commands. Hence, instead
of sending the same OKVS to each vendor, the integrator should
send to each vendor a distinct OKVS, encoding only the commands
intended for that vendor. The challenge here is to efficiently con-
struct these OKVSs, given that the integrator should not learn the
target vendor of each user’s message (as stated by the metadata
privacy goal in Section 3.3).

Mohito handles this problem by introducing the notion of a
shuffler. At the beginning of each round, the integrator chooses one
vendor to play the shuffler.We discuss the practicality of the shuffler
and the strategy the integrator can use to choose the shuffler in
Section 8. The shuffler functions similarly to a node in a mix-net —
it receives a list of user messages from the integrator, shuffles them,
and sends the shuffled list back, so that the integrator no longer
knows which user sent which message in the shuffled list.

To prevent the integrator from learning the permutation used for
shuffling by connecting identical messages in the two lists, users
encrypt each message with the shuffler’s public key, and the shuffler
decrypts them before shuffling. More precisely, in each round, the
user first attaches the id of their command’s destination vendor
𝑣 to its message𝑚 and then performs a two-layer encryption to
compute 𝑚′ = Enc(pk𝑉 ∗ , Enc(pk𝐼 ,𝑚) ), where 𝑚 = (id, 𝑣, cmd),
and pk𝑉 ∗ and pk𝐼 are the public key of the shuffler and integrator
respectively. The purpose of the inner encryption with pk𝐼 is to
prevent the shuffler from learning device ids in plaintext; otherwise,
the shuffler, which is also one of the vendors, will learn which of its
devices receive commands, violating our goal of metadata privacy.

At the end of the shuffling process, the integrator obtains the
shuffled list of messages, where each message consists of a device
id, a vendor id, and an encrypted command, so it can group the
device id and commands based on the vendor ids and encode them
into separate OKVSs.

By outsourcing the shuffling process to the shuffler, we break
the linkage between the commands and the users. The integrator
can now learn the target vendor of each command without com-
promising the metadata privacy, as it no longer knows which user
sent which command. Therefore, we are able to construct smaller
OKVSs, each encoding only the commands intended for a specific
vendor, greatly reducing the bandwidth cost of the protocol.

4.3 Ephemeral Command ID
The downside of allowing the integrator to learn the target vendor
of each command is that it also learns which vendor owns which
device id. Combined with the fact that the integrator can infer

the relationship between users and device ids over time (e.g. by
observing which user always participates in the rounds where
a particular id appears), the integrator can use the device ids as
identifiers of users and therefore deduce the user to vendormapping
— a violation of the metadata privacy.

To overcome this problem, Mohito creates a unique one-time id
for each new command. Instead of attaching the static device id to
the command, the user generates a fresh id which appears random
and is tied to the current round. We refer to this id as an ephemeral
id. More precisely, we use the device id as a seed to generate a key
𝑘 for some PRF 𝐹 and compute the ephemeral id 𝑧 = 𝐹𝑘 (𝑟 ), where
𝑟 is a unique identifier that represents the current round. By this
scheme, the user and the vendor can compute the ephemeral id
for each device in a given round, but the integrator cannot. Each
ephemeral id is globally unique; messages from the same user to the
same device will have different ephemeral ids in different rounds,
so that ids no longer serve as a way to identify users.

Security. We now briefly discuss that the Mohito protocol we
have shown so far achieves our goal of metadata privacy within
a single round. Against a curious integrator, the security reduces
to (1) the uniform shuffle, (2) the security of the PRF 𝐹 , and (3) the
security of the public-key encryption scheme. Together they ensure
that guessing which vendor a particular benign user is sending
commands to is equivalent to guessing which index in the shuffled
message list this user’s message lands, of which the adversary has
no better strategy than random guessing. Against a curious vendor,
the security reduces to (1) the obliviousness property of OKVS,
and (2) the the security of the public-key encryption scheme. They
ensure the vendor cannot tell whether a command it decodes is from
a real user or not and therefore cannot learn which devices have
actually received commands. We provide a more formal security
analysis in Appendix C.

5 PREVENTING CROSS-ROUND ATTACKS
One major challenge of designing a metadata-hiding system is to
prevent cross-round attacks. Specifically, in a communication sys-
tem, if the adversary can observe the traffic patterns across multiple
rounds, it can make statistical inferences about the relationship
between message senders and receivers. This type of attack is of-
ten referred to as an intersection attack or statistical disclosure
attack [28, 36, 42].

Although intersection attacks affect many anonymity systems,
they become more difficult or even impractical to carry out as the
size of the anonymity set increases. As a result, these anonymity
systems often choose to employ large anonymity sets to make
them less vulnerable [27]. We note that Mohito may appear to
belong to one of these systems, as it is designed to support IoT
systems where there is usually a huge amount of concurrent traffic
in every round and therefore a large anonymity set; however,
there are two drawbacks to this assumption: first, to have a large
anonymity set,Mohito should only end a round once enough users
have participated, leading to uneven round durations and latencies;
second, there are certain common scenarios in the IoT settings that
can break this assumption. Section 5.1 gives an example attack,
illustrating how intersection attacks inMohito may lead to privacy
leakage in these scenarios; Section 5.2 outlinesMohito’s defense.
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5.1 Intersection Attacks in IoT Systems
Recall that in Mohito we consider two types of adversaries: a semi-
honest integrator and a semi-honest vendor. In the first case, the
adversary shares the view of the integrator and can learn two
things2:

(1) the set of users who participate in each round, and
(2) the number of commands received by each vendor in each

round.

By accumulating such information over multiple rounds, it can de-
duce which user is more likely to communicate with which vendor,
violating our metadata privacy security goal.

We give one simple example to illustrate how the attack may
work. Suppose that in round 𝑖 , there are three users, 𝑈𝐴,𝑈𝐵 , and
𝑈𝐶 , that send a message to the integrator, while vendors 𝑉𝐴 , 𝑉𝐵 ,
and 𝑉𝐶 receive 1, 2, and 0 messages respectively; then in round 𝑗 ,
the participating users become𝑈𝐴 and𝑈𝐷 , while vendors 𝑉𝐴 , 𝑉𝐵 ,
and𝑉𝐶 receive 1, 0, and 1 messages respectively. By intersecting the
information from these two rounds, we can observe that only𝑈𝐴

is in both rounds and only 𝑉𝐴 receives a message in both rounds.
Hence, we can infer𝑈𝐴 is communicating with 𝑉𝐴 (for simplicity,
assuming each user only uses a single vendor). Conversely, we can
also compute the difference of the information, and observe that
𝑈𝐷 appears only in round 𝑗 and causes 𝑉𝐶 to receive an additional
message. We note that this latter type of scenario is common in IoT
systems, as it corresponds to the event when a new user joins the
system, making the Mohito protocol that we have discussed so far
vulnerable to this attack.

We note that the second type of adversary (where it shares the
view of a vendor) does not benefit from intersection attacks. The
Mohito protocol forces the vendor to send a message to every
device it owns in each round but does not allow it to learn which of
these messages represent real commands. Therefore, this adversary
cannot learn the set of devices that actually participate in each
round by eavesdropping on the vendor, so it cannot perform an
intersection to narrow down the set of devices, similar to how the
first type of adversary narrows down the set of users.

5.2 Defending against Intersection Attacks
To prevent intersection attacks, wemust prevent the integrator from
learning either 1) the set of participating users or 2) the number
of commands each vendor receives. Hiding the first information
is a well-studied problem in the literature, and the two common
approaches are anonymous credentials [19, 20, 48] and client-side
cover traffic [15, 18, 42, 54, 56]. We note that these approaches either
have inherent downsides (e.g. anonymous credentials still leak IP
addresses) or do not align with our system model (e.g. client-side
cover traffic often requires users to be always online). Nonetheless,
should the situation fit, they can be plugged directly on top of
Mohito and we briefly discuss them in Section 8.

Therefore, we focus on hiding the second information, namely
the number of commands each vendor receives. To achieve this,
Mohito injects cover traffic from the shuffler.

2While the adversary also learns the ephemeral ids and encrypted commands, they
appear random to the adversary.

Server-side cover traffic. At a high level, we instruct the shuffler
to add fake commands such that, in each round, the integrator finds
that the number of commands delivered to each vendor is always
equal to some pre-determined number. Let, C be a vector of size
|𝒱 |, such that C𝑣 denotes the number of messages expected by the
𝑣 th vendor. If 𝑣 th vendor actually receives A𝑣 commands, then the
shuffler should inject B𝑣 = C𝑣 − A𝑣 fake commands for the 𝑣 th
vendor. In this way, the integrator always receives C𝑣 commands
for the 𝑣 th vendor and never learns the number of “real” commands
of that vendor.

Specifically, assume that the integrator and users agree on an
ordering of vendors. Suppose a user wants to send a command to a
device belonging to the 𝑣 th vendor. This user prepares a vector e𝑣
of length |𝒱 |, where e𝑣 denotes a standard-basis vector (all-zeros
vector with a one at the index 𝑣), and where |𝒱 | denotes the total
number of vendors. The user then splits this vector into two additive
shares x1 and x2 such that x1 + x2 = e𝑣 . The user encrypts the two
shares in such a way that x1 will be delivered to the integrator while
x2 will be delivered to the shuffler (using the two-layer encryption
approach we discussed in Section 4.2).

Next, the integrator accumulates and sums up all shares it re-
ceives from users in this round. Let the accumulated share is X1. It
then computes Y← C − X1, The integrator sends Y to the shuffler,
which computes

B← Y − X2

where X2 is the shuffler’s accumulated share3. It follows that, B =

C −X1 −X2− = C −A. Therefore, the shuffler can simply place B𝑣
fake commands for the 𝑣 th vendor into the shuffled list of messages
before returning them to the integrator. As discussed in Section 4,
a real message is a ciphertext generated by encrypting another
ciphertext (i.e., encrypted commands) with the integrator’s pubic
key, so we can simply generate an indistinguishable fake message
by encrypting a random string.

In this way, the integrator now always sees that 𝑣 th vendor
receives C𝑣 commands. However, it does not know how many of
these commands are from the users and how many of them are fake
commands from the shuffler, namely, A𝑣 and B𝑣 . As a result, the
integrator can no longer perform an intersection attack, as it only
knows the senders of the messages but learns nothing about the
receivers. Additionally, this approach also eliminates the need for
Mohito to wait for enough user participation before advancing to
the next round.

Traffic bursts. One downside of setting a pre-determined C𝑖 for
each vendor is that there might be a burst of traffic in some rounds
where A𝑗 > C𝑗 for some vendor 𝑗 . In these rounds, the shuffler will
observe that B𝑗 < 0 for vendor 𝑗 . To account for this, we do not add
any fake commands for vendor 𝑗 , but for every other vendor, we add
|B𝑗 | fake commands to each of them. In this way, the integrator does
not know which vendor is responsible for the traffic burst, as it just
sees every vendor uniformly receives |B𝑗 | additional commands.
We note that this does not impact the computational cost of each
vendor. Recall that the cost of executing𝑛 decoding queries is𝑂 (𝑛𝜆),
where 𝜆 is the security parameter, and does not depend on the size
3We do not want to reveal the number of actual commands received by each vendor
(A) to the shuffler. Vendors may be commercially competing with each other and
therefore such information should not be leaked to a potential competitor.
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of the OKVS. Therefore, since the number of decoding queries that
each vendor needs to make remains the same, a traffic burst does
not lead to performance overhead for the vendors.

Choosing C. Recall that our threat model permits the integrator
to collude with a small number of users and may generate up to 𝛿
commands in each round. To account for this, we must ensure each
vendor 𝑣 has a C𝑣 that is greater than 𝛿 , such that no matter how
many commands these colluding users generate, they cannot cause
a traffic burst and manipulate the number of commands returned
to the integrator. We discuss more details on finding a reasonable
choice for C in Appendix B.

6 FULLMohito PROTOCOL
In this section, we formalize the fullMohito protocol. Each device in
Mohito must be first properly set up (Section 6.1) before it is ready
to receive commands. Users send commands to their devices in
synchronized rounds through theMohito servers, consisting of one
integrator and a number of vendors (Section 6.2). Devices respond
to the commands with status update messages (Section 6.3).

For simplicity, we omit the user setup phase and assume each
user has already registered an account with the IoT servers and
obtained an access token for sending commands to the integrator
through standard authorization protocols like OAuth.

Notation. We denote the integrator as 𝐼 and the set of vendors,
users, and devices as 𝒱,𝒰 , and 𝒟 respectively. Each device 𝐷 ∈ 𝒟
has three attributes: (User,Vendor, ID), denoting the user that owns
the device, the vendor that manufactures the device, and a string
that globally identifies the device, respectively. We assume the ID
of a device can be used to derive a globally unique key for some PRF
𝐹 . For simplicity, when a message𝑚 is encrypted under someone’s
key, such as pk𝐴 that is owned by party 𝐴, we simply denote the
resulting ciphertext as ⟨𝑚⟩𝐴 . In addition, when calling Enc or Dec
on a vector, saym, we are encrypting or decrypting each individual
element in the vector.

6.1 Device Setup Phase
In Mohito, a device 𝐷 may come online after it has been success-
fully set up by a user 𝑈 . This setup phase is mandatory in almost
every modern smart home system. A common device setup phase
incorporates two steps: first 𝐷 establishes a private communication
channel with 𝑈 (usually through a local Wi-Fi hosted by 𝐷), and
then𝑈 tells 𝐷 how to connect to the Internet (usually by sharing
their home Wi-Fi’s SSID and password) so that 𝐷 can directly com-
municate with its vendor 𝑉 . In Mohito, we extend the setup phase
by additionally instructing𝐷 to exchange the following information
with𝑈 and 𝑉 :

(1) Share the device’s ID 𝐷.ID with both𝑈 and 𝑉 . This ID will
later be used to generate a PRF key.

(2) Generate a symmetric encryption key k𝐷 and share it with
𝑈 . We will use k𝐷 to ensure end-to-end encryption between
𝐷 and 𝑈 , and we assume k𝐷 is used with an authenticated
encryption scheme.

We note that such private communication channels between
device and user are often short-lived and require active human in-
puts to establish. Therefore, similar to today’s smart home systems,

Mohito only performs the device setup phase once at the beginning
of each device’s lifecycle.

6.2 Command Sending Phase
Once a user has successfully set up one or more devices, they may
start sending commands to their devices throughMohito servers,
which consist of an integrator and a number of vendors. We list the
pseudocode of our protocol in Fig. 2.

6.2.1 Round initialization. At the beginning of each round, the
integrator 𝐼 chooses a unique round identifier 𝑡 for this round and
shares 𝑡 with each user participating in this round as well as with
each vendor. In addition, it selects a vendor 𝑉 ∗ that is in charge
of shuffling the commands for this round and shares 𝑉 ∗ with the
users participating in this round. We refer to 𝑉 ∗ as the shuffler.

6.2.2 Users issue requests. When a user𝑈 wants to issue command
cmd to device 𝐷 , they invoke the function IssueCommand and
send the output to the integrator 𝐼 . This includes the following
operations:

(1) Generate an ephemeral id 𝑧 for this command using a PRF 𝐹
that is keyed by the device’s ID and takes as input the cur-
rent round identifier 𝑡 . We additionally append a command
counter 𝑗 to the input to 𝐹 to allow 𝑈 to send multiple com-
mands in the same round. A command counter of 𝑗 means
that the current cmd is the 𝑗-th command that𝑈 sends to 𝐷
in this round.

(2) Construct the message blob 𝑚 as (𝑧, 𝑣, ⟨cmd⟩𝐷 ), where 𝑣

is the ID of 𝐷’s vendor and ⟨cmd⟩𝐷 is the ciphertext by
encrypting the command 𝑐 with the symmetric encryption
key k𝐷 (obtained during the device setup phase of 𝐷).

(3) Compute the additive shares x1 and x2 as described in Sec-
tion 5.2.

(4) Encrypt with the public keys of the integrator 𝐼 and the shuf-
fler𝑉 ∗ to compute the final message𝑚′ as (⟨⟨𝑚⟩𝐼 , x2⟩𝑉 ∗ , x1).

To prevent replay attacks, we require each command cmd to
include a unique command identifier and the current timestamp
as its attributes. In addition, we restrict that each user can send at
most 𝑞 commands to their devices in each round, so that 1 ≤ 𝑗 ≤ 𝑞.
This restriction is reasonable as many real-world servers already
enforce similar rate-limiting techniques in their APIs [3, 7].

6.2.3 Servers shuffle and encode requests. Once the integrator 𝐼 has
gathered all commands in a round, it processes them with the help
of the shuffler 𝑉 ∗. Assume that, in a given round, 𝐼 receives 𝑘 mes-
sages m′ = (𝑚′1, . . . ,𝑚

′
𝑘
) (ranked chronologically) from users that

participated in this round. Integrator invokes 𝐼 .EncodeCommands
to compute the OKVS for each vendor using the following steps:

(1) 𝐼 collects its shares x11, . . . , x1𝑘 from m′ to compute Y, and
then sends the remaining part of user messages to 𝑉 ∗.

(2) 𝑉 ∗ adds the fake messages based on the scheme described
in Section 5.2 and returns the messages to 𝐼 after shuffling.
It should also store the shuffle permutation 𝜋 as well as the
indices in the message list that correspond to fake messages
for later use.

(3) 𝐼 groups the resulting messages by the vendor id 𝑣 attached
in each message, encodes each group into an OKVS 𝑆 using
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𝑈 .IssueCommand(cmd, 𝐷, 𝑗, 𝑡,𝑉 ∗)
k𝐷 ← KGen(𝐷.ID)
𝑧 ← 𝐹k𝐷 ( 𝑗 ∥𝑡 )
𝑣 ← 𝐷.Vendor.ID

x1, x2←$ JevK

𝑚 ← (𝑧, 𝑣, ⟨𝑐 ⟩𝐷 )
𝑚′ ← (⟨⟨𝑚⟩𝐼 , x2 ⟩𝑉 ∗ , x1)
send𝑚′ to 𝐼

𝐼 .EncodeCommands
(
m′,C1,C2, . . . ,C |𝒱 |

)
m′′, (x11, . . . , x1𝑘 ) ← m′

X1 ←
∑

𝑖 x1𝑖

Y← (C1, . . . ,C|𝒱 |) − X1

m←$𝑉 ∗ .ShuffleCommands
(
m′′,Y

)
z, v, ⟨cmd⟩D ← Dec(m)
for𝑉 ∈ 𝒱 do

𝑘𝑣 ← {(z𝑖 , ⟨cmd⟩D𝑖 ) | v𝑖 = 𝑉 .ID}
𝑆 ← Encode(𝑘𝑣)
send 𝑆 to𝑉

𝑉 ∗ .ShuffleCommands (m′′,Y)
m, (x21, . . . , x2𝑘 ) ← Dec

(
m′′

)
X2 ←

𝑘∑
𝑖=1

x2𝑖

B← Y − X2

for𝑉 ∈ 𝒱 do

𝑖 ← 𝑉 .ID

if B𝑖 < 0 then

for𝑉 ′ ∈ 𝒱 \ {𝑉 } do
add |B𝑖 | fake messages for𝑉 ′ to m

else

add B𝑖 fake messages for𝑉 to m

⟨z⟩I, ⟨v⟩I, ⟨⟨cmd⟩D ⟩I ← m

𝜋 ←$ Π

send 𝜋 ( ⟨z⟩I) , 𝜋 ( ⟨v⟩I) , 𝜋 ( ⟨⟨cmd⟩D ⟩I) to 𝐼

𝑉 .DecodeCommands (𝒟𝑎, 𝑡, 𝑆)
for 𝐷 ∈ 𝒟𝑎 do

k𝐷 ← KGen(𝐷.ID)
for 𝑗 = 1 . . . 𝑞 do

𝑧 ← 𝐹k𝐷 ( 𝑗 ∥𝑡 )
𝑚 𝑗 ← Decode(𝑆, 𝑧)

send𝑚1 ∥ . . . ∥𝑚𝑞 to 𝐷

Figure 2: Mohito protocol for command sending phase. Each procedure is executed by different entities: user (𝑈 ), integrator
(𝐼 ), shuffler vendor (𝑉 ∗), and device vendor (𝑉 ).

the ephemeral id 𝑧 as key and the encrypted commands
⟨cmd⟩𝐷 as value, and sends 𝑆 to the corresponding vendor.

6.2.4 Vendors decode commands. Finally, each vendor 𝑉 invokes
the function DecodeCommands, which takes as input the set of
currently active devices 𝒟𝑎 (i.e. devices that have an ongoing con-
nection with the vendor), the current round’s identifier 𝑡 , and the
OKVS 𝑆 received from 𝐼 , and computes the message to be delivered
to each device 𝐷 ∈ 𝒟𝑎 .

Since𝑉 does not knowwhich devices actually receive a command
from their user, it will compute all possible ephemeral ids for each
active device 𝐷 ∈ 𝒟𝑎 in this round, try to decode each of these
ephemeral ids from 𝑆 , and send the decoded values to 𝐷 . In this
way,Mohito forces each active device to communicate with their
vendor in each round. As existing smart home devices in the wild
are already constantly chatting with their vendors even when they
are idle [18, 59], we believe that this extra communication is still
practical in real-world settings.

Finally, each active device𝐷 ∈ 𝒟𝑎 receives amessage from𝑉 and
tries to decrypt the message using its own symmetric encryption
key k𝐷 . Each device that actually receives a command from its
user successfully recovers the command; each device that does not
observe a decryption error.

6.3 Device Response Phase
After a device 𝐷 receives a message from its vendor 𝑉 , it must
reply with a status update 𝑟 , which represents the result or the new
device status after executing the user command. Each active device
in 𝒟𝑎 sends its own 𝑟 to 𝑉 regardless of whether it successfully
decrypted a command; otherwise 𝑉 will identify which devices
actually received commands by observing which devices reply. In
the case that 𝐷 does not actually receive a command, 𝑟 can be a
random string.

At a high level, we can view the protocol in this phase as the
reverse of the protocol in command sending phase. That is, the roles
of encoder and decoder are switched and the shuffler now reversely
shuffles the integrator’s message list. We list the pseudocode of this
phase in Fig. 3.

6.3.1 Devices issue responses. The device 𝐷 performs an onion
encryption on its response 𝑟 by using first 𝐷’s own symmetric
encryption key k𝐷 , then the public key of the shuffler𝑉 ∗, and finally
the public key of the integrator 𝐼 . The ephemeral id associated
with the original command is also recomputed and attached to the
encrypted response.

The outer encryption layer with pk𝐼 is necessary, because oth-
erwise the vendor that acts as the shuffler in this round would
learn which of the devices actually receive commands by checking
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𝐷.IssueResponse(𝑟, 𝑗, 𝑡,𝑉 ∗)
k𝐷 ← KGen(𝐷.ID)
𝑧 ← 𝐹k𝐷 ( 𝑗 ∥𝑡 )
send (𝑧, ⟨⟨⟨𝑟 ⟩𝐷 ⟩𝑉 ∗ ⟩𝐼 ) to 𝐷.Vendor

𝑉 ∗ .ShuffleResponses (r′)
// 𝜋 andm is the internal variables from𝑉 ∗ .ShuffleCommands

r← 𝜋−1
(
Dec

(
r′
) )

for 𝑟𝑖 ∈ r do
if 𝑖-th element in m is a fake message then
remove 𝑟𝑖 from r

send r to 𝐼

𝑉 .EncodeResponses (r′′)
send Encode

(
r′′
)
to 𝐼

𝐼 .DecodeResponses (𝑆,𝑉 )
// z and v are the internal variables from 𝐼 .EncodeCommands

for 𝑖 = 1 . . . ∥z∥ do
if 𝑉 .ID = v𝑖 do

𝑟 ′′𝑖 ← Decode(𝑆, z𝑖 )
else

𝑟 ′′𝑖 ← ⊥
r′′ ← (𝑟 ′′1 , . . . , 𝑟 ′′∥z∥ )
r′ ← Dec

(
r′′
)

r←$𝑉 ∗ .ShuffleResponses
(
r′
)

return r

Figure 3:Mohito protocol for device response phase.

whether the device’s response is in the response list it received
from 𝐼 during the steps in Section 6.3.3.

We note that sometimes the devices may not be able to generate
their responses in the same round that they receive commands. We
discuss in Appendix A how to extendMohito’s protocol to support
asynchronous responses.

6.3.2 Vendors encode responses. The vendor 𝑉 , after receiving re-
sponses from each of its active devices, encodes them an OKVS
𝑆 and sends 𝑆 to 𝐼 . Note that we cannot send responses directly
to 𝐼 without the OKVS encoding; otherwise 𝐼 would learn which
commands it receives from𝑉 ∗ .ShuffleCommands are fake by com-
paring the ephemeral ids attached to the responses with the ones
attached to the commands.

6.3.3 Servers decode and reverse-shuffle responses. Once the inte-
grator 𝐼 receives an OKVS 𝑆 from a vendor𝑉 , it iterates through the
list of ephemeral ids z that it used to encode the OKVS for𝑉 during
𝐼 .EncodeCommands (Section 6.2.3) and tries to decode values from
𝑆 . Next, 𝐼 sends the list of decoded values to the shuffler 𝑉 ∗, which
then shuffles the list using the inverse of the order that 𝑉 ∗ used
during 𝑉 ∗ .ShuffleCommands. In this way, each entry in the final
resulting list r′ represents the response to the command that has
the same index in the list m′ that 𝐼 received at the beginning of
𝐼 .EncodeCommands. That is, r′𝑖 is the response tom′𝑖 . Next, 𝐼 can
identify the user𝑈 who initially sent m′𝑖 (for example,𝑈 may still
have the TCP connection with 𝐼 open and waiting for a response)
and send the response back.

7 IMPLEMENTATION AND EVALUATION
We build a proof-of-concept implementation of Mohito. We bench-
mark our implementation to discuss how to appropriately set round
duration and show that, when compared to prior general-purpose
metadata-hiding system not tailored for IoT setting, we can achieve
600× more throughput. Our source code is available at https://
github.com/earlence-security/mohito.
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Figure 4: Execution graph of our Mohito implementation.
Message streaming is used to reduce system idle time.

7.1 Implementation
We prototype the Mohito protocol in Go and choose PaXoS [45]
as the underlying implementation for OKVS. In addition, we use
HMAC-SHA256 for PRF and Curve25519, XSalsa20 and Poly1305 for
authenticated encryption. We use grpc to handle communication
between IoT servers and apply its message streaming functionality
when possible. For example, at the beginning of each round, the
integrator forwards each user message to the shuffler as soon as
it comes in; hence, the shuffler can start its decryption process
immediately, instead of waiting for the integrator to collect all user
messages in this round. The execution graph of our system during
the command sending phase is shown in Fig. 4. This strategy allows
the servers to execute the protocol concurrently and greatly reduces
their idle time.

In addition, the shuffler does not shuffle messages in memory, as
this would be costly. Instead, it computes the permutation only and
uses it to determine the order in which the messages are streamed
back to the integrator. However, we do ensure the shuffler has re-
ceived all messages in the current round before starting to send
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Figure 5: The communication cost of Mohito, given a com-
mand size of 1 KB. The device responding phase costs more
bandwidth than the command sending phase, since the size
of OKVSs in the former scales with the number of active de-
vices, while the size in the latter scales with the number of
commands.

them back; otherwise, the integrator would learn that some mes-
sages rank lower than others in the permutation. We also pre-
generate enough fake messages for the shuffler (as these fake mes-
sages only require the public keys of the integrator as input) so that
the shuffler does not need to compute them on the fly.

7.2 Experiments and Evaluation
For all experiments, we deployedMohito on three AWS c5d.2xlarge
servers, two of which are running the integrator and the ven-
dor/shuffler while the remaining one simulates the users and the
devices collectively. Each server is configured with 8 vCPUs and 16
GB of memory. They are connected with 10 Gbps network.

While we primarily focus on evaluating the IoT servers in this
section, we note that the protocol we run on each end user and
each device is relatively simple: 1) it takes only 0.03 seconds on
our machine and should not be a bottleneck for modern embedded
microprocessors; 2) it executes the same set of operations in every
round, so it can be baked directly into the device firmware (similarly
to SSL/TLS libraries).

7.2.1 Communication Cost. For the command sending phase, there
are three parameters that determine the communication cost be-
tween the integrator and vendors in each round4: the number of
commands sent by users, the size of the command, and the number
of fake commands injected by the shuffler. We only focus on how
the communication cost varies as the number of real and fake com-
mands increases, because 1) it reflects the impact of adding more
users/devices on the system, 2) cost scales linearly with command
size. Fig. 5 (left) shows the results when the command size is set to
1 KB.

For the device response phase, the communication cost also
depends on the number of active devices, asMohito requires that
each device generate a response. In practice, there will be more

4We note that while the number of vendors in the systems also impacts the communi-
cation cost, it only controls the number of additive shares attached to the command;
therefore, adding a new vendor is equivalent to increasing the command size by two
integers. In addition, the number of users or devices
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Figure 6: Performance of Mohito. Based on the duration of
each round (left), we can compute the system throughput
(right), which remains unaffected by the number of com-
mands we put into each round.

active devices in each round than the number of commands, as in
each round not all devices will receive a command. Fig. 5 (right)
shows how communication changes when we assume that in each
round only 10% of active devices receive commands.

7.2.2 Performance. This section focuses on the performance of
IoT servers, representing the overhead that Mohito protocol added
to a standard non-metadata-hiding IoT system, where each server
simply forwards the message and no computations are required.
Our servers are deployed in the same data center to minimize
communication latency, allowing us to focus on the performance
impact of theMohito protocol.

Round duration. As shown in Fig. 4, the operations of different
rounds overlap due to message streaming. The integrator begins
the second round as soon as it finishes forwarding all user mes-
sages from the first round to the shuffler. As a result, for all rounds
except for the first, the integrator needs to process the shuffler’s
return messages from the previous round while it is forwarding
the user messages from the current round. This also means that the
integrator can only proceed to the next round after it has completed
processing the shuffler’s return messages from the previous round,
which consists of two operations: the decryption of the shuffler’s
return messages and the OKVS encoding. Therefore, the execution
time of these two operations determines the round duration.

In Fig. 6, we show how the round duration varies due to the
number of commands returned by the shuffler (including both real
and fake commands) and the size of command. While a shorter
round leads to smaller latencies, we would also want to keep the
number of commands the system can handle large enough so that
the small number of devices controlled by the adversary cannot
cause a traffic burst, as we discussed in Section 5.2. For example,
if we assume the adversary can send up to 𝛿 = 100 commands in
each round and there are 1,000 vendors in the system, we need to
ensure each round can handle at least 100,000 commands, which,
given a command size of 1 KB, translates to 1.9 seconds per round.

We note that the performance of the device response phase is
almost identical to the performance of the command sending phase.
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While each vendor may need to encode more responses in the de-
vice response phase compared to the number of commands they
decode during the command sending phase, the bottleneck of the
system only depends on the integrator’s operations as we have
shown above. Therefore, the only difference between these two
phases is that, instead of encoding commands into an OKVS, the
integrator now decodes responses from OKVS. However, the encod-
ing/decoding cost is relatively small compared to the decryption
cost. For example, given 100,000 commands and a command size of
1 KB, the time to decrypt is 1.3 seconds, while it takes 0.6 seconds
to encode and 0.2 seconds to decode. As such, for the remaining
evaluations, we only focus on the command sending phase.

Throughput. Based on Fig. 6, the throughput of the system pri-
marily depends on the command size. Given a command size of
1 KB, Mohito is capable of handling approximately 48,000 com-
mands per second, no matter how many commands we put into
each round. Even if we assume half of these commands are fake, the
effective throughput of the systems is 24,000 commands per second.
For comparison, Express [32], a state-of-the-art general-purpose
metadata-hiding messaging system that uses a two-server PIR tech-
nique, can fit into the IoT server structure and provides similar
security guarantees, but it only supports around 40 messages per
second while running on machines with twice the number of CPU
cores as ours, due to the need to support other functionalities such
as message persistence that are not required in the IoT setting.

Latency. We define end-to-end latency as the time needed to
deliver a command from a user to its device. Hence, if we ignore
the communication latency between different parties, the end-to-
end latency consists of three parts: the remaining duration of the
current round, the entire duration of the next round, and the time
it takes for the vendor to decode commands. Since each vendor
only needs to decode its own OKVS, the decoding time is much
shorter than the duration of each round and therefore the latency
is primarily determined by our choice of the round duration. If we
assume the uniform distribution of the command arriving time,
then the average latency is approximately equal to 1.5 times of the
round duration. That is, with 100,000 commands per round and a
command size of 1 KB, the end-to-end latency is 2.7 seconds. We
again use Express [32] as a comparison. Express provides roughly
half of Mohito’s latency for a single message, but its latency scales
with the number of concurrent messages, whileMohito ensures all
messages have similar latency.

SystemCost. Wemeasure the costs of running theMohito servers
(the vendors and the integrator) on AWS. Our current setup sup-
ports a throughput of 24,000 commands per second and costs
9.2 USD per day for the shuffler. However, since each vendor takes
turns to become the shuffler, the cost of running the shuffler is split
among all vendors. In addition, Mohito’s performance can be scaled
up by adding more machines. As shown by our evaluation of the
round duration, the system bottleneck is the integrator’s operation
to decrypt a large list of messages, a highly parallelizable task. If
the integrator has access to more servers, we can run Mohito’s in-
tegrator protocol in a distributed manner: 1) each server decrypts a
portion of the messages, 2) the servers send the decrypted messages
to each other in a way such that the messages with the same vendor

id end up in the same server, 3) each server computes the OKVSs
locally and send them to the corresponding vendor. In this way,
Mohito’s computational cost is split evenly across all servers, effec-
tively scaling the performance by the number of available servers.
Therefore, if higher throughput is desired, it can be achieved by
adding more machines.

8 DISCUSSION
Practicality and Adoptability. To ensure the practicality of our

system and its adoption by existing IoT services, we have designed
it to align with the integrator-vendor communication structures
and batch API designs of current platforms. The only addition
in our protocol is the introduction of the shuffler. Each vendor
must agree to periodically act as the shuffler before it can engage
inMohito’s privacy-preserving protocol. While this may seem to
contradict our goal of not overburdening smaller vendors with
the workload of larger ones, the integrator can select the shuffler
in a way that ensures the average workload of each vendor is
balanced. That is, the total number of messages a vendor must
shuffle should in the long run be roughly proportional to the number
of devices it operates. Therefore, smaller vendors should not be
discouraged from participating inMohito. For example, assuming
the device distribution follows the IFTTT data in [44], smaller
vendors tend to own around 50 active devices and hence they only
need to become a shuffler once in every 22,500 rounds; as such,
they may just run the shuffler server (as a lambda function) for a
few seconds each day, so the extra overhead is insignificant. The
compatibility and small overhead of Mohito minimize the need for
substantial modifications on the part of vendors. Additionally, the
adoption of a metadata-hiding privacy-preserving protocol is highly
incentivized for vendors due to increasing legal requirements [9, 10]
and growing user concerns regarding IoT data privacy [25, 60].

Malicious Security. While we model the IoT servers as honest-
but-curious parties,Mohito’s protocol can be upgraded to the mali-
cious setting using techniques like secret-shared non-interactive
proofs (SNIP) [26]. First, Mohito already defends against malicious
servers if we exclude the defense against intersection attack, as we
show in Appendix C. Second, for our defense against intersection
attack, a malicious integrator can lie about its aggregated sum of
secret shares to learn how many real commands a vendor receives.
In this case, the integrator is aggregating private values from a
number of users and therefore, if we allow inter-vendor communi-
cation (either directly or indirectly by using integrator as a proxy),
then we can use a subset of vendors to run SNIP as a blackbox to
prevent the integrator from tampering the secret shares, as long as
one of the vendors remains honest.

Preventing intersection attacks via hiding user credentials. As we
note in Section 5.2, another way to prevent intersection attacks is
to remove the identity of the users via an anonymous credential
system. Anonymous credentials allow each user to authorize and
communicate with a server without revealing the user’s identity,
preventing the adversary from deducing a mapping between users
and vendors. There are many works on anonymous credentials [19,
20, 48] and they can be plugged intoMohito directly, asMohito does
not place additional requirements on how users should authorize
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with IoT servers. However, even with anonymous credentials, each
time a user communicates with a server, the user’s IP address will
unavoidably leak. Thus, the adversary can still recover a mapping
between IP addresses and vendors. This leakage is weaker, since
in practice many IP addresses are dynamic [55], so the IP address
alone may not always identify a user. Alternatively, OHTTP [8]
can also be used to remove user identity; however, it would require
adding an additional third party to our system model to serve as a
relay between users and the integrator. The purpose of the relay is
similar to Mohito’s shuffler, as both ensure user messages cannot
be attributed back to the users.

Preventing intersection attacks via client-side cover traffic. Users
can also hide their traffic patterns by generating cover traffic from
their side. In this way, a message from the user to the integrator
may represent either a real command or a fake one, preventing the
integrator from learning the set of users that are participating in
each round. However, user-side cover traffic may not be practical
in the IoT setting, because it would require the user to be always
online (or at least online at specific times), but the user’s client,
usually a smartphone app, should not be expected to constantly
run in the background and may disconnect arbitrarily. Nonethe-
less, approaches to client-side traffic for IoT devices have been
proposed [15, 18, 56] and, if a user can satisfy these conditions, it
may use client-side cover traffic alongsideMohito to prevent the
integrator from learning when the user is participating.

9 RELATEDWORKS
Mohito applies an anonymous communication system to the prob-
lem of IoT metadata protection. Thus, we review related works in
these fields separately.

Metadata in IoT. IoT metadata and its associated privacy risks
have been extensively studied by prior works. There is a line of
works that analyzes how passive network observers , such as In-
ternet service providers and WiFi eavesdroppers, can infer device
activities based on encrypted IoT traffic [12, 17, 18, 31, 43, 50]. These
rely on metadata information, including traffic rates and the do-
mains of servers that IoT devices contact. While the adversaries
(IoT vendors and integrator) in our threat model are different than
theirs, both types of adversaries have access to such metadata.

Several defenses against passive network observers have been
proposed. Most of them build solutions from the client/device side
and utilize a technique called traffic shaping [15, 16, 18, 29, 57].
Traffic shaping modifies traffic generated by IoT devices by padding
messages and injecting cover traffic. InMohito, we assume a sim-
ple padding strategy by setting all messages to the same size; in
practice, we can incorporate more efficient padding algorithms
in these works to reduce the bandwidth overhead. Also, if a user
can ensure its client is always online, their client-side cover traffic
techniques can be used to complementMohito’s server-side cover
traffic. EPIC [41] proposes a different type of solution by designing
a differentially-private routing protocol at the network layer. To
our knowledge, Mohito is the first system that hides IoT metadata
from the server side.

Privacy-preserving IoT integrators. Recently, a number of works
proposed privacy-preserving trigger-action platforms [13, 21, 22,

24, 33, 56, 58]. Trigger-action platforms are a special type of IoT in-
tegrator that allows device automation. These works focus on data
privacy, but they have the additional benefit of supporting compu-
tation on IoT data. For example, eTAP [22] uses secure multi-party
computation, and PatrIoT [58] uses hardware-based trusted execu-
tion environments. Combining metadata protection mechanisms
with secure computation remains a challenging problem.

Anonymous communication systems. Mohito belongs to the class
of communication systems that achieves cryptographic guaran-
tees regarding anonymity and metadata-hiding properties. Many
of these systems are based on mix-nets, which perform message
shuffling in a peer-to-peer system. Examples of such systems in-
clude Dissent [53], Atom [37], and XRD [38]. They suffer from high
latency due to the lack of a centralized party and therefore need to
run multiple shuffles in each round. In contrast, the communication
structure in IoT systems allows Mohito to perform a single shuffle,
greatly reducing latency. Riposte [27], Pung [14], Talek [23], and
Express [32] instead achieve anonymous communication by read-
ing/writing user messages from/to a private database via private
information retrieval. These approaches store the messages in the
database persistently, thereby allowing reading and writing to hap-
pen in different rounds; however, they prioritize the performance
of a single message and do not scale well when high throughput is
required.

There is another class of communication systems that provides
differential privacy guarantees [39, 40, 51, 52]. These systems, while
generally having better performance, allow quantifiable leakage
of metadata. Therefore, an attacker may eventually learn who is
communicating after observing a large number of rounds in a differ-
entially private system, whereas the security ofMohito and other
cryptographic-based systems does not degrade over time.

10 CONCLUSION
We have presentedMohito, a privacy-preserving IoT system with
metadata protection. It prevents both the integrator service and
device vendors from learning which user communicates with which
device. We tailor the protocol of Mohito to support the efficient
handling of large concurrent traffic and achieve load-balancing
among vendors with different computational resources, which are
two key requirements for IoT systems.We evaluate the performance
of Mohito and demonstrate that our implementation, although
doubling the single-message latency, increases the throughput by
600× when compared to general-purpose metadata-hiding systems
that provide similar security guarantees.
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A ASYNCHRONOUS RESPONSES
In a real-world setting, not all devices will have responses ready
by the end of the round. Some devices may need a longer period
of time to execute the user’s command before it can respond. In
cases where the response for a command in round 𝑡 is received
in round 𝑡 + 𝑖 , the vendor 𝑉 may simply encode another OKVS
𝑆 ′ using this response and send it to the integrator 𝐼 , who then
re-executes DecodeCommands using the internal state it stored
from round 𝑡 . This asynchronous approach would incur some small
communication overhead between 𝐼 and the users who participated
in round 𝑡 , as 𝐼 will send a message to each of these users whenever
it runs DecodeCommands.

B CHOOSING THE EXPECTED NUMBER OF
COMMANDS

The optimal choice of C𝑣 for a vendor 𝑣 depends on how many
real commands this vendor usually receives in each round, or more
precisely, the distribution of this vendor’sA𝑣 . For example, ifA𝑣 fol-
lows the normal distribution 𝒩 (100, 20) and there are 100 vendors

in the system, then Fig. 7 shows how the number of fake commands
we need to inject changes as C𝑣 changes and the number reaches a
minimum when C𝑣 is around 147. Setting C𝑣 too small will cause
traffic bursts to happen more frequently, while setting it too large
will lead to more fake messages generated when there is no traffic
burst. We note that in some scenarios where we do not even want
the shuffler to learn the distribution of A𝑣 , we can draw a new C𝑣

from some pre-determined distribution in every round, instead of
setting C𝑣 to a constant value.

In addition, recall that our threat model permits an IoT service
to collude with a small number of users and may generate up to 𝛿
commands in each round. To account for this, we should add 𝛿 to the
optimal choice of C𝑣 discussed above to ensure that, no matter how
many commands these colluding users generate, they cannot cause
a traffic burst and manipulate the number of commands returned
to the integrator.

C SECURITY OF Mohito
Data privacy. The privacy of the Mohito protocol is ensured via

end-to-end encryption. Specifically, each user command and each
device response is encrypted using a symmetric encryption key
𝑘𝐷 , which is generated during the device setup phase and is shared
between only the user and its device.

Data integrity. Since we assume IoT servers are semi-honest, the
only party that can tamper with the integrity of data is a malicious
user or device. To do so, the malicious user or device must guess
the ephemeral id generated by an honest user or device. However,
since the ephemeral id is the output of a PRF and the key of the
PRF is not known to the malicious user or device, the probability
of correctly guessing the ephemeral id is negligible.

Metadata privacy (integrator). We model the adversary 𝒜𝐼 as a
party that passively corrupts the integrator and actively corrupts
a small subset of users and devices, as discussed in Section 3.2. In
each round, it receives the following information during the com-
mand sending phase: 1) a list of users and their messages to the
integrator, and 2) a list of messages from the shuffler. We formalize
the definition of metadata privacy by specifying a simulator algo-
rithm that, given the list of honest users in this round as well as
the list of messages generated by malicious users controlled by 𝒜𝐼 ,
produces an output that is computationally indistinguishable from
the information listed above.

Intuitively, this means that 𝒜𝐼 learns nothing in each round,
as everything (apart from the messages generated by 𝒜𝐼 itself) it
observes can be simulated by an algorithm that has no knowledge
of the honest users’ commands.

Claim. There exists an algorithm SimI that takes as input the list
of honest users and a list of messages generated by the adversary-
controlled users in a round and simulates the view of the adversary
𝒜𝐼 .

Proof Sketch. The algorithm SimI simulates messages from hon-
est users by encrypting random values. These simulated messages
are indistinguishable from real messages due to the security of the
encryption scheme. Next, SimI plays the role of the shuffler. When
the integrator requests to shuffle the messages, SimI decrypts the
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adversary-generated messages and places them in random slots
of the return list. The rest of the return list is filled with random
values encrypted by the integrator’s public key. This list is indistin-
guishable from the list returned by a real shuffler, as the adversary
does not know the random permutation used for shuffling. Note
that the adversary does learn a partial permutation, corresponding
to the adversarially chosen messages, but this does not reveal any
other parts of the permutation.

Metadata privacy (vendor). Similar to the metadata privacy of
integrator, we model the adversary 𝒜𝑉 as a party that passively
corrupts a vendor and actively corrupts a small subset of users and
devices and show that a simulator algorithm exists to simulate the
view of𝒜𝑉 . In particular, we assume that this vendor is also acting
as the shuffler.

Claim. There exists an algorithm SimV that takes as input the list
of honest users and a list of messages generated by the adversary-
controlled users in a round and simulates the view of the adversary
𝒜𝑉 .

Proof Sketch. The algorithm SimV first simulates messages that
the shuffler receives by encrypting random values with the shuf-
fler’s public key and attaching them to the list ofmessages generated
by the adversary-controlled users. Then SimV generates a list of
random values and encodes them (along with the commands gener-
ated by the adversary-controlled users) into an OKVS with random
keys. The resulting OKVS is sent to 𝒜𝑉 . Due to the obliviousness
of OKVS and the fact that all encoded values appear random, 𝒜𝑉

cannot distinguish this OKVS from an OKVS generated from real
users’ commands.

16


	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 IoT Ecosystems and Privacy Concerns
	2.2 Towards a Privacy-Preserving IoT System

	3 Designing a privacy-preserving IoT system
	3.1 System Model
	3.2 Threat Model
	3.3 Security Goals
	3.4 Potential Solutions and Challenges

	4 Overview of Mohito Architecture
	4.1 Oblivious Key-Value Stores
	4.2 Chosen Vendor as Shuffler
	4.3 Ephemeral Command ID

	5 Preventing Cross-Round Attacks
	5.1 Intersection Attacks in IoT Systems
	5.2 Defending against Intersection Attacks

	6 Full Mohito Protocol
	6.1 Device Setup Phase
	6.2 Command Sending Phase
	6.3 Device Response Phase

	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Experiments and Evaluation

	8 Discussion
	9 Related Works
	10 Conclusion
	Acknowledgments
	References
	A Asynchronous responses
	B Choosing the expected number of commands
	C Security of Mohito

