
24 March/April 2017 Copublished by the IEEE Computer and Reliability Societies 1540-7993/17/$33.00 © 2017 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Earlence Fernandes and Amir Rahmati | University of Michigan
Jaeyeon Jung | Samsung
Atul Prakash | University of Michigan

Analysis of a popular programming framework reveals that many smart-home apps are automatically
overprivileged, leaving users at risk for remote attacks that can cause physical, fi nancial, and
psychological harm.

S mart-home technology has evolved beyond basic
convenience functionality, such as automatically

controlled lights and door openers, to provide tangible
bene� ts. For instance, water � ow sensors and smart
meters facilitate energy e� ciency. IP-enabled cameras,
motion sensors, and connected door locks o� er be� er
control of home security. However, a� ackers can manip-
ulate smart devices to cause users physical, � nancial, and
psychological harm. For example, burglars can target a
connected door lock to plant hidden access codes.1

Early smart-home systems had steep learning curves
and complicated device setup procedures and thus were
limited to do-it-yourself enthusiasts. (Many forums
exist for people to exchange know-how, such as forum
.universal-devices.com.) Recently, several companies
introduced cloud-backed systems that are easier for
users to set up and that provide a programming frame-
work for third-party developers to build smart-home
apps. Examples of such frameworks are Samsung’s
Smart� ings (www.smar� hings.com), Apple’s Home-
Kit (www.apple.com/ios/home), Vera Control’s Vera3
(getvera.com/controllers/vera3), Google’s Weave/
Brillo (developers.google.com/weave), and AllSeen

Alliance’s AllJoyn (including Qualcomm, Microso� ,
LG, Cisco, and AT&T; allseenalliance.org/framework).

We consider the security implications of a key com-
ponent of such smart-home programming frameworks:
their permission models. � ese models limit the risk
third-party apps pose to users and their devices. We � rst
survey the permission models of Apple HomeKit, IoTiv-
ity, AllJoyn, and Smart� ings, then discuss results from a
deep-dive analysis of the Smart� ings framework.2

Smart-Home Permission Models
In our survey of existing permission models of upcom-
ing smart-home frameworks, we observed varying gran-
ularity in access control, ranging from all-or-nothing to
very � ne grained.

HomeKit is a framework and set of protocols that
enable smart-home devices to communicate securely
with iOS devices and apps. � ird- and � rst-party
developers can write apps for HomeKit Accessories. A
� rst-party app is wri� en by a device manufacturer.

HomeKit represents a physical device as an
HMAccessory object that exposes objects of type
HMService. For example, an accessory might be a

Security Implications of Permission Models
in Smart-Home Application Frameworks

www.computer.org/security 25

garage opener, and it might have the following ser-
vices: light and switch. Services can have character-
istics that apps manipulate to cause physical changes
in the accessory’s or device’s state. For example, the
switch service might have an on/o� characteristic that
results in unlocking and locking the garage opener.
iOS apps gain access to accessories at the home granu-
larity. � at is, either an app has access to all accessories
in the home, or to none at all. Users must grant apps
access to HomeKit data, similar to the iOS experience
of granting apps access to data like contacts and pho-
tos.3 Home-level granular-
ity implies that all
apps are overprivi-
leged automatically.

IoTivity is an open
source framework
sponsored by the
Open Connectivity
Foundation (OCF),
which includes Microso� ,
Intel, Samsung, and Qualcomm.4 IoTivity’s goal is to
create an open source reference implementation of
OCF Internet of � ings (IoT) standards to facilitate
communication of IoT devices with one another and
the Internet.

IoTivity doesn’t include security features by default.
To enable these functions, the SECURED=1 � ag has to
be set during compilation. When this � ag is turned on,
an IoTivity server hosting a resource (that is, a device)
can impose access control on it by assigning the OC_
SECURE property to it during creation. � is access
control is limited to coarse-grained write and read per-
missions associated with the ID of devices that want to
communicate with the resource. � ese permissions are
set when a device is added and can later be modi� ed by
the user. To add a device to its network when security
features are on, IoTivity supports three protocols:

■ just work, in which a shared key is established during
� rst communication;

■ random PIN, in which an o� -band PIN is required for
establishing trust; and

■ asymmetric key, which is based on a self-signed or
manufacturer key.

In secure mode, datagram TLS (DTLS) protects com-
munication between secured resources.

AllJoyn is an open standard that enables various
physical devices and apps to communicate in a uni-
form way. It consists of a communication protocol and
a so� ware library that device builders and app develop-
ers must use. � e so� ware library runs on a variety of
hardware. AllJoyn has a distributed architecture with no

central controller or hub. It relies on public-key crypto-
graphy to secure communications and express access
control policies.

A so� ware app or physical device is collectively
referred to as an app in AllJoyn terminology. An app can
expose interfaces that have members. For example, a
lock can provide the control interface with the mem-
bers lock and unlock. Apps can consume interfaces
from other apps. For example, an auto-lock app will
consume the door lock’s control interface. AllJoyn
standardizes some interface de� nitions for a select set

of devices, such as lights
and HVAC.

Apps are security
principals and are
associated with an
identity certi� cate
signed by a certi� cate
authority that all apps
must trust. � e All-

Joyn security manager is a
component that speaks the AllJoyn protocol and issues
identity certi� cates to apps. An administrative user,
such as a home or building owner, operates the security
manager component.

AllJoyn o� ers arbitrarily granular access control
down to the member level. However, recommended
access control is at the interface level. � erefore, each
AllJoyn app (pure so� ware or physical device) must
create a manifest template that lists the set of inter-
faces the app will provide and the set of interfaces the
app will consume. � is manifest template represents an
app’s permission request, similar to how smartphone
apps request permission to sensitive resources. During
installation, the admin uses the security manager to cre-
ate a � nal manifest for the app and then includes a digest
of the � nal manifest in an identity certi� cate. � is step
is conceptually similar to a smartphone owner accept-
ing the set of permissions an app requests. � e security
manager then installs this manifest and identity certi� -
cate in the target app.

At runtime when a consumer app wants to invoke an
interface on a provider app, the provider app will read
the identity certi� cate, verify it (and the corresponding
certi� cate chain), verify the manifest digest, and then
eventually check whether the consumer is allowed to
access the provider’s interface.

Smart� ings provides a hub and cloud back end.
� ird-party developers write SmartApps that execute in
the cloud back end. � e Smart� ings framework must
ensure that SmartApps have only the required privi-
lege to complete their claimed functionality. � erefore,
Smart� ings has a security architecture—the Smart-
� ings capability model—that governs which devices a

Our key fi nding is that overprivilege
is a signifi cant shortcoming of the

Smart� ings permission model.

26 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

SmartApp might access. A capability is composed of a
set of commands (method calls) and attributes (proper-
ties). Commands represent the ways in which a device
can be controlled or actuated. Attributes represent a
device’s state information. Table 1 lists example capa-
bilities. A single device can expose a set of capabilities.
For example, a smart lock might expose capability
.lock and capability.battery.

SmartApps must request capabilities from the user.
When a user installs a SmartApp, the requested capa-
bilities trigger a device enumeration process that scans
all the physical devices currently paired with the user’s
hub, and for each capability request, the user is presented
with all devices that support the specified capability.
Once the user selects a particular device exposing the
specified capability, the SmartApp gains access to that
device. SmartApps can interact with devices by using
events. In particular, a SmartApp can register a callback
on a device for a condition, and whenever that condition
becomes true, the SmartApp is given a callback with
some optional event data. These apps provide a wide
variety of functionality ranging from simple rule-based
automation (“if my door lock is open, then turn on the
lights”) to energy monitoring and saving solutions.

Why SmartThings?
We chose to analyze SmartThings in depth for several
reasons. First, it’s a relatively mature platform with a
growing set of apps—called SmartApps—and it sup-
ports 132 types of devices.

Second, SmartThings shares key security design
principles with other frameworks. Authorization and
authentication for device access are essential in secur-
ing smart-home app platforms, and SmartThings has a
built-in mechanism to protect device operations against
third-party apps through so-called capabilities.

Event-driven processing is common in smart-home
applications,5 and SmartThings allows apps to regis-
ter callbacks for a given event stream generated by a
device. Other platforms support event-driven process-
ing too. For instance, AllJoyn supports the bus signal,6
and HomeKit provides the characteristic notification
API.7 Therefore, we believe lessons learned from an
analysis of the SmartThings permission model will
inform the early design stages of other programmable
smart-home frameworks.

Our key finding is that overprivilege is a significant
shortcoming of the SmartThings permission model. In
particular, we found that SmartApps in our dataset of 499
apps were significantly overprivileged: 55 per cent didn’t
use all the rights to device operations that their requested
capabilities implied, and 42 per cent were granted capa-
bilities that weren’t explicitly requested or used. In many
cases, overprivilege was unavoidable as a result of the

capability model’s device-level authorization design,
and occurred through no fault of the developer. Worry-
ingly, we observed that 68 existing SmartApps use over-
privilege to provide extra features without requesting the
relevant capabilities.

We built attacks that use overprivilege to demon-
strate its negative effects. Our attacks can inject PIN
codes into a connected door lock, snoop on PIN codes,
disable vacation mode, and cause fake fire alarms.

These attacks underline the need for careful permis-
sion model design as well as for stronger control over
how apps use sensitive data. However, this is often chal-
lenging to achieve. The well-known tension between
usability and granularity of permission models mani-
fests itself here as well. However, the lessons we’ve
learned about how incorrectly designed models lead to
security failures in smart homes, coupled with progress
in permission model design in smartphones and other
closely related spaces, can lead to improved security.

SmartThings Deep-Dive Analysis
We investigated the security of the SmartThings permis-
sion model along two dimensions: least privilege and
sensitive-event data protection. After studying the per-
mission model and extensively testing prototype Smart-
Apps, we created a list of potential security issues.

Least-Privilege Principle Adherence
Does the capability model protect sensitive opera-
tions of devices against untrusted or benign-but-buggy
SmartApps? It’s important to ensure that SmartApps
request only the privileges they need and are granted
only the privileges they request. However, we found
that many existing SmartApps are overprivileged.

Sensitive-Event Data Protection
Which access control methods are provided to pro-
tect sensitive-event data generated by devices against
untrusted or benign-but-buggy SmartApps? We found
that unauthorized SmartApps can eavesdrop on sensi-
tive events.

Occurrence of Overprivilege in SmartApps
We found two significant issues with overprivilege in
the SmartThings framework, both artifacts of the way
its capabilities are designed and enforced. First, capabil-
ities in the SmartThings framework are coarse grained,
providing access to multiple commands and attributes
for a device. Thus, a SmartApp could acquire the rights
to invoke commands on devices even if it doesn’t use
them. Second, a SmartApp can end up obtaining
more capabilities than it requests because of the way
the SmartThings framework binds the SmartApp to
devices. We detail both issues below.

www.computer.org/security 27

Coarse-grained capabilities. In the SmartThings frame-
work, a capability defines a set of commands and attri-
butes. Here is a small example of capability.lock:

 ■ Associated commands: lock and unlock.
 ■ Associated attribute(s): lock. The lock attribute

has the same name as the command, but the attribute
refers to the locked or unlocked device status.

Our investigation of the existing capabilities defined
in the SmartThings architecture shows that many capa-
bilities are too coarse grained. For example, the auto-lock
SmartApp, available in the SmartThings app store,
requires only the lock command of capability
.lock but also gets access to the unlock command,
thus increasing the attack surface if the SmartApp is
exploited. If the lock command is misused, the Smart-
App could lock out authorized household members,
causing inconvenience; however, if the unlock com-
mand is misused, the SmartApp could leave the house
vulnerable to break-ins. There’s often an asymmetry
in risk with device commands. For example, turning
on an oven could be dangerous, while turning it off is
relatively safe. Thus, it’s inappropriate to automatically
grant a SmartApp access to an unsafe command when it
only needs access to a safe command.

To provide a simple measure of overprivilege due to
coarse-grained capabilities, we computed the follow-
ing for each evaluated SmartApp, based on static analy-
sis and manual inspection: {requested commands and
attributes} – {used commands and attributes}. Ideally,
this set would be empty for most apps. However, in our
analysis of 499 SmartApps, we found that 276 apps are
overprivileged due to coarse-grained capabilities.

Coarse SmartApp–SmartDevice binding. When a user
installs a SmartApp, the SmartThings platform enumer-
ates all physical devices that support the capabilities
declared in the app’s preferences section, and the
user chooses the set of devices to be authorized to the
SmartApp. Unfortunately, the user isn’t told about the
capabilities being requested and is presented only with a
list of devices that are compatible with at least one of the

requested capabilities. Moreover, once the user selects
the devices to be authorized for use by the SmartApp,
the SmartApp gains access to all commands and attri-
butes of all the capabilities implemented by the selected
devices’ handlers. We found that developers couldn’t
avoid this overprivilege, because it was a consequence
of SmartThings framework design.

More concretely, SmartDevices provide access to
the corresponding physical devices. Besides managing
the physical device and understanding the lower-level
protocols, each SmartDevice also exposes a set of
capabilities appropriate to the device it manages.
For example, the default Z-Wave lock SmartDevice
supports the following capabilities: capability
.actuator, capability.lock, capability
.polling, capability.refresh, capabil-
ity.sensor, capability.lockCodes, and
capability.battery.

These capabilities reflect various facets of the lock
device’s operations. Consider a case in which a Smart-
App requests the capability.battery, say,
to monitor the condition of the lock’s battery. The
SmartThings framework would ask the user to authorize
access to the Z-Wave lock device (because it matches
the requested capability). Unfortunately, if the user
grants the authorization request, the SmartApp also
gains access to the requested capability and all the other
capabilities defined for the Z-Wave lock. In particular,
the SmartApp would be able to lock and unlock the
Z-Wave lock, read its status, and set lock codes.

To provide a simple measure of overprivilege due to
unnecessary capabilities being granted, we computed
the following for each evaluated SmartApp, based on
static analysis and manual inspection: {granted capa-
bilities} – {used capabilities}. Ideally, this set would be
empty. However, our analysis found that 213 of the 499
SmartApps were overprivileged due to additional capa-
bilities being granted.

Insufficient Sensitive-Event Data Protection
SmartThings supports a callback pattern in which a
SmartDevice can fire events filled with arbitrary data,
and SmartApps can register for those events. Inside a

Table 1. Examples of capabilities in the SmartThings framework.

Capability Command Attribute

capability.lock lock(), unlock() lock (lock status)

capability.battery N/A battery (battery status)

capability.switch on(), off() switch (switch status)

capability.alarm off(), strobe(), siren(), both() alarm (alarm status)

capability.refresh refresh() N/A

28 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

user’s home, each SmartDevice is assigned a 128-bit
device identifier when it’s paired with a hub. After that, a
device identifier is stable until it’s removed from the hub
or paired again. The 128-bit device identifiers are thus
unique to a user’s home, which is good—possession of
the 128-bit device identifier from one home isn’t use-
ful in another home. Nevertheless, we found significant
vulnerabilities in the way access to events is controlled:

 ■ Once a SmartApp is approved for access to a Smart-
Device after a capability request, the SmartApp can
monitor any event data published by that Smart-
Device. The SmartThings framework has no special
mechanism for SmartDevices to selectively send
event data to a subset of SmartApps or for users to
limit a SmartApp’s access to only a subset of events.

 ■ Once a SmartApp acquires the 128-bit identifier for
a SmartDevice, it can monitor all the events of that
SmartDevice, without gaining any of the capabilities
that device supports.

 ■ Certain events can be spoofed. In particular, we
found that any SmartApp or SmartDevice can spoof
location-related and device-specific events.

Event leakage via capability-based access. As noted
earlier, once a user approves a SmartApp’s request to
access a SmartDevice for any supported capability,
the SmartThings framework permits the SmartApp to
subscribe to all the SmartDevice’s events. We found
that SmartDevices extensively use events to commu-
nicate sensitive data. For instance, we found that the
SmartThings-provided Z-Wave lock SmartDevice trans-
mits codeReport events that include lock PIN codes.

A SmartApp with any form of access to the Z-Wave
lock SmartDevice (say, for monitoring the device’s bat-
tery status) can also automatically monitor all its events
and use that access to log the events to a remote server
and steal lock PIN codes. The SmartApp can also track
lock codes as they’re being used to enter and exit the
premises, therefore tracking household members’
movements and possibly violating their privacy.

Event leakage via SmartDevice identifier. As discussed,
each SmartDevice in a user’s home is assigned a ran-
dom 128-bit identifier. This identifier, however,
isn’t hidden from the SmartApps. Once a Smart-
App is authorized to communicate with a Smart-
Device, it can read the device.id value to retrieve
the 128-bit SmartDevice identifier. We found that a
malicious SmartApp can directly use this identifier
to read any events a device generates, irrespective of
any granted capabilities.

Unfortunately, the device identifiers are easy to
exchange among SmartApps—they aren’t opaque

handles, nor specific to a single SmartApp. Several
SmartApps currently exist in the SmartThings app store
that allow remote retrieval of the device identifiers in a
user’s home over the OAuth protocol.

Event spoofing. The SmartThings framework neither
enforces access control around raising events nor offers
a way for triggered SmartApps to verify an event’s
integrity or origin. We discovered that an unprivi-
leged SmartApp can spoof both physical-device and
location-related events.

A SmartDevice detects physical changes in a device
and raises the appropriate event. For example, a smoke
detector SmartDevice will raise the “smoke” event
when it detects smoke in its vicinity. The event object
contains various state information plus a location iden-
tifier, a hub identifier, and the 128-bit device identifier
that’s the event source. We found that an attacker can
create a legitimate event object with the correct identifi-
ers and place arbitrary state information. When such an
event is raised, SmartThings propagates the event to all
subscribed SmartApps as if the SmartDevice itself trig-
gered the event. Obtaining the identifiers is easy—the
hub and location ID are automatically available to all
SmartApps.

To summarize, we found that the SmartThings event
subsystem design is insecure. SmartDevices extensively
use it to post their status and sensitive data—111 out of
132 device handlers from our dataset of device handler
code raise events.2

Proof-of-Concept Attacks
Using four concrete attacks, we demonstrated how
the overprivilege design issue weakens home security.
We combined overprivilege with other security design
flaws in the SmartThings framework to make the attacks
remote and stealthy. For more details on the other
design vulnerabilities, see “Security Analysis of Emerg-
ing Smart Home Applications.”2

Table 2 summarizes the four attacks based on inse-
cure design of the permission model in SmartThings.
The backdoor PIN code injection attack uses coarse
SmartApp–SmartDevice binding overprivilege to force
an existing SmartApp to program a PIN code into a door
lock. The overprivilege enables the attacker to inject a
PIN code programming command into the SmartApp.
The door lock PIN code snooping attack is a stealthy
malware app that uses overprivilege in the event system
of SmartThings to snoop on PIN codes as they’re cre-
ated and then leak them out. Attacks can disable vaca-
tion mode by using the lack of access control around
the location object to trick a SmartApp into thinking
that the home is occupied. Finally, the fake fire alarm
attack uses a malware app that escalates its privileges by

www.computer.org/security 29

stealing a device identifier and generating fake carbon
monoxide sensor readings.

T he IoT is predicted to reach 20.8 billion con-
nected devices by 2020, with the consumer sec-

tor having the largest installed base.8 Simultaneously,
we’re observing the emergence of programmable
frameworks that unify disparate devices into a coher-
ent platform that supports third-party app develop-
ment. Although these third-party apps represent the
benefits of networked and intelligent devices, they
also represent the risk that such technologies pose. In
this article, we surveyed the permission models of four
recent frameworks (IoTivity, HomeKit, AllJoyn, and
SmartThings) because a permission model is the first
line of defense between the users’ privacy-sensitive
data and physical devices, and attackers. A permission
model with security design deficiencies will lead to var-
ious kinds of attacks. Our findings underline the need
for more research on permission models and how apps
use data once they gain access.9

Our SmartThings analysis prompted SmartThings
developers to begin designing and implementing tech-
niques to reduce automatic overprivilege and better

balance capability granularity and usability based on
our ideas.2 As a first line of defense, the SmartThings
team revised its app review guidelines to manually look
for use and misuse of overprivilege based on the attacks
we created. As defense in depth, SmartThings also
revised its developer documentation to discuss security
best practices. For example, it instructs developers to be
precise in the kinds of events they subscribe to, and to
not use Groovy dynamic method execution unless it’s
explicitly guarded by statements that ensure no unin-
tended actions are performed, thus preventing remote
attackers from exploiting overprivilege.10

References
1. T. Denning, T. Kohno, and H.M. Levy, “Computer Secu-

rity and the Modern Home,” Comm. ACM, vol. 56, no. 1,
2013, pp. 94–103.

2. E. Fernandes, J. Jung, and A. Prakash, “Security Analysis
of Emerging Smart Home Applications,” Proc. 37th IEEE
Symp. Security and Privacy, 2016; dx.doi.org/10.1109
/SP.2016.44.

3. “iOS Security Guide,” Apple, May 2016; www.apple.com
/business/docs/iOS_Security_Guide.pdf.

4. “Open Connectivity Foundation,” IoTivity, 2016; www
.iotivity.org.

Table 2. Four proof-of-concept attacks on SmartThings.

Attack description Attack vectors Physical world impact1

Backdoor PIN code injection ■ Command injection to an existing web service SmartApp
 ■ Overprivilege using SmartApp–SmartDevice coarse binding
 ■ Stealing an OAuth token using the hard-coded secret in the existing binary
 ■ Getting a victim to click a link pointing to the SmartThings website

 ■ Enabling physical entry
 ■ Physical theft

Door lock PIN code snooping
 ■ Stealthy attack app that requests only the capability to monitor battery

levels of connected devices and gets a victim to install the attack app
 ■ Eavesdropping on events data
 ■ Overprivilege using SmartApp–SmartDevice coarse binding
 ■ Leaking sensitive data using unrestricted short message services

 ■ Enabling physical entry
 ■ Physical theft

Disabling vacation mode
 ■ Attack app with no specific capabilities
 ■ Getting a victim to install the attack app
 ■ Misusing logic of a benign SmartApp
 ■ Event spoofing

 ■ Physical theft
 ■ Vandalism

False fire alarm
 ■ Attack app with no specific capabilities
 ■ Getting a victim to install the attack app
 ■ Spoofing physical-device events
 ■ Controlling devices without gaining appropriate capability
 ■ Misusing logic of benign SmartApp

 ■ Misinformation
 ■ Annoyance

30 IEEE Security & Privacy March/April 2017

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

5. B. Ur et al., “Practical Trigger-Action Programming in the
Smart Home,” Proc. SIGCHI Conf. Human Factors in Com-
puting Systems (CHI 14), 2014, pp. 803–812.

6. “Documentation: Data Exchange,” AllSeen Alliance;
allseenalliance.org/framework/documentation/learn
/core/system-description/data-exchange.

7. “HMCharacteristic,” Apple, 2017; https://developer
.apple.com/reference/homekit/hmcharacteristic.

8. “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use
in 2016, Up 30 Percent from 2015,” Gartner, 10 Nov. 2015;
www.gartner.com/newsroom/id/3165317.

9. E. Fernandes et al., “Flowfence: Practical Data Protection for
Emerging IoT Application Frameworks,” Proc. 25th USENIX
Security Symp. (USENIX Security 16), 2016, pp. 531–548.

10. “Code Review Guidelines and Best Practices: Security
Considerations,” SmartThings Developer Documenta-
tion, 2016; docs.smartthings.com/en/latest/code-review
-guidelines.html#security-considerations.

Earlence Fernandes is a PhD candidate at the Univer-
sity of Michigan. His research focuses on techniques
that enable secure and safe Internet of Things (IoT)
platforms, including building secure systems, find-
ing design vulnerabilities, and conducting large-scale
measurements. Contact him at earlence@umich.edu.

Amir Rahmati is a PhD candidate at the University of
Michigan. His research focuses on improving the
security of emerging technologies and resource lim-
ited devices, such as embedded and IoT devices.
Rahmati received an MSE in computer science and
engineering from the University of Michigan. Contact
him at rahmati@umich.edu.

Jaeyeon Jung is vice president of Samsung’s Cloud Plat-
form group. Her research focuses on developing new
technologies for protecting consumer privacy, par-
ticularly in the areas of mobile systems and emerg-
ing connected devices for the home. Contact her at
jae.jung@samsung.com.

Atul Prakash is a professor of computer science at
the University of Michigan. His research spans
security and privacy, cyber-physical systems,
computer-supported cooperative work, and distrib-
uted systems. Contact him at aprakash@umich.edu.

Executive Committee (ExCom) Members: Jeffrey Voas, President;

Dennis Hoffman, Sr. Past President, Christian Hansen, Jr. Past

President; Pierre Dersin, VP Technical Activities; Pradeep Lall, VP

Publications; Carole Graas, VP Meetings and Conferences; Joe Childs,

VP Membership; Alfred Stevens, Secretary; Bob Loomis, Treasurer

Administrative Committee (AdCom) Members:

Joseph A. Childs, Pierre Dersin, Lance Fiondella, Carole Graas, Samuel

J. Keene, W. Eric Wong, Scott Abrams, Evelyn H. Hirt, Charles H.

Recchia, Jason W. Rupe, Alfred M. Stevens, Jeffrey Voas, Marsha

Abramo, Loretta Arellano, Lon Chase, Pradeep Lall, Zhaojun (Steven)

Li, Shiuhpyng Shieh

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system / product / device / process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

