
24 March/April 2017 Copublished by the IEEE Computer and Reliability Societies  1540-7993/17/$33.00 © 2017 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Earlence Fernandes and Amir Rahmati | University of Michigan
Jaeyeon Jung | Samsung
Atul Prakash | University of Michigan

Analysis of a popular programming framework reveals that many smart-home apps are automatically 
overprivileged, leaving users at risk for remote attacks that can cause physical, fi nancial, and 
psychological harm. 

S mart-home technology has evolved beyond basic 
convenience functionality, such as automatically 

controlled lights and door openers, to provide tangible 
bene� ts. For instance, water � ow sensors and smart 
meters facilitate energy e�  ciency. IP-enabled cameras, 
motion sensors, and connected door locks o� er be� er 
control of home security. However, a� ackers can manip-
ulate smart devices to cause users physical, � nancial, and 
psychological harm. For example, burglars can target a 
connected door lock to plant hidden access codes.1

Early smart-home systems had steep learning curves 
and complicated device setup procedures and thus were 
limited to do-it-yourself enthusiasts. (Many forums 
exist for people to exchange know-how, such as forum 
.universal-devices.com.) Recently, several companies 
introduced cloud-backed systems that are easier for 
users to set up and that provide a programming frame-
work for third-party developers to build smart-home 
apps. Examples of such frameworks are Samsung’s 
Smart� ings (www.smar� hings.com), Apple’s Home-
Kit (www.apple.com/ios/home), Vera Control’s Vera3 
(getvera.com/controllers/vera3), Google’s Weave/
Brillo (developers.google.com/weave), and AllSeen 

Alliance’s AllJoyn (including Qualcomm, Microso� , 
LG, Cisco, and AT&T; allseenalliance.org/framework).

We consider the security implications of a key com-
ponent of such smart-home programming frameworks: 
their permission models. � ese models limit the risk 
third-party apps pose to users and their devices. We � rst 
survey the permission models of Apple HomeKit, IoTiv-
ity, AllJoyn, and Smart� ings, then discuss results from a 
deep-dive analysis of the Smart� ings framework.2

Smart-Home Permission Models
In our survey of existing permission models of upcom-
ing smart-home frameworks, we observed varying gran-
ularity in access control, ranging from all-or-nothing to 
very � ne grained.

HomeKit is a framework and set of protocols that 
enable smart-home devices to communicate securely 
with iOS devices and apps. � ird- and � rst-party 
developers can write apps for HomeKit Accessories. A 
� rst-party app is wri� en by a device manufacturer.

HomeKit represents a physical device as an 
HMAccessory object that exposes objects of type 
HMService. For example, an accessory might be a 
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garage opener, and it might have the following ser-
vices: light and switch. Services can have character-
istics that apps manipulate to cause physical changes 
in the accessory’s or device’s state. For example, the 
switch service might have an on/o�  characteristic that 
results in unlocking and locking the garage opener. 
iOS apps gain access to accessories at the home granu-
larity. � at is, either an app has access to all accessories 
in the home, or to none at all. Users must grant apps 
access to HomeKit data, similar to the iOS experience 
of granting apps access to data like contacts and pho-
tos.3 Home-level granular-
ity implies that all 
apps are overprivi-
leged automatically.

IoTivity is an open 
source framework 
sponsored by the 
Open Connectivity 
Foundation (OCF), 
which includes Microso� , 
Intel, Samsung, and Qualcomm.4 IoTivity’s goal is to 
create an open source reference implementation of 
OCF Internet of � ings (IoT) standards to facilitate 
communication of IoT devices with one another and 
the Internet.

IoTivity doesn’t include security features by default. 
To enable these functions, the SECURED=1 � ag has to 
be set during compilation. When this � ag is turned on, 
an IoTivity server hosting a resource (that is, a device) 
can impose access control on it by assigning the OC_
SECURE property to it during creation. � is access 
control is limited to coarse-grained write and read per-
missions associated with the ID of devices that want to 
communicate with the resource. � ese permissions are 
set when a device is added and can later be modi� ed by 
the user. To add a device to its network when security 
features are on, IoTivity supports three protocols: 

■ just work, in which a shared key is established during 
� rst communication; 

■ random PIN, in which an o� -band PIN is required for 
establishing trust; and 

■ asymmetric key, which is based on a self-signed or 
manufacturer key. 

In secure mode, datagram TLS (DTLS) protects com-
munication between secured resources.

AllJoyn is an open standard that enables various 
physical devices and apps to communicate in a uni-
form way. It consists of a communication protocol and 
a so� ware library that device builders and app develop-
ers must use. � e so� ware library runs on a variety of 
hardware. AllJoyn has a distributed architecture with no 

central controller or hub. It relies on public-key crypto-
graphy to secure communications and express access 
control policies.

A so� ware app or physical device is collectively 
referred to as an app in AllJoyn terminology. An app can 
expose interfaces that have members. For example, a 
lock can provide the control interface with the mem-
bers lock and unlock. Apps can consume interfaces 
from other apps. For example, an auto-lock app will 
consume the door lock’s control interface. AllJoyn 
standardizes some interface de� nitions for a select set 

of devices, such as lights 
and HVAC. 

Apps are security 
principals and are 
associated with an 
identity certi� cate 
signed by a certi� cate 
authority that all apps 
must trust. � e All-

Joyn security manager is a 
component that speaks the AllJoyn protocol and issues 
identity certi� cates to apps. An administrative user, 
such as a home or building owner, operates the security 
manager component.

AllJoyn o� ers arbitrarily granular access control 
down to the member level. However, recommended 
access control is at the interface level. � erefore, each 
AllJoyn app (pure so� ware or physical device) must 
create a manifest template that lists the set of inter-
faces the app will provide and the set of interfaces the 
app will consume. � is manifest template represents an 
app’s permission request, similar to how smartphone 
apps request permission to sensitive resources. During 
installation, the admin uses the security manager to cre-
ate a � nal manifest for the app and then includes a digest 
of the � nal manifest in an identity certi� cate. � is step 
is conceptually similar to a smartphone owner accept-
ing the set of permissions an app requests. � e security 
manager then installs this manifest and identity certi� -
cate in the target app.

At runtime when a consumer app wants to invoke an 
interface on a provider app, the provider app will read 
the identity certi� cate, verify it (and the corresponding 
certi� cate chain), verify the manifest digest, and then 
eventually check whether the consumer is allowed to 
access the provider’s interface.

Smart� ings provides a hub and cloud back end. 
� ird-party developers write SmartApps that execute in 
the cloud back end. � e Smart� ings framework must 
ensure that SmartApps have only the required privi-
lege to complete their claimed functionality. � erefore, 
Smart� ings has a security architecture—the Smart-
� ings capability model—that governs which devices a 

Our key fi nding is that overprivilege 
is a signifi cant shortcoming of the 

Smart� ings permission model. 
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SmartApp might access. A capability is composed of a 
set of commands (method calls) and attributes (proper-
ties). Commands represent the ways in which a device 
can be controlled or actuated. Attributes represent a 
device’s state information. Table 1 lists example capa-
bilities. A single device can expose a set of capabilities. 
For example, a smart lock might expose capability 
.lock and capability.battery.

SmartApps must request capabilities from the user. 
When a user installs a SmartApp, the requested capa-
bilities trigger a device enumeration process that scans 
all the physical devices currently paired with the user’s 
hub, and for each capability request, the user is presented 
with all devices that support the specified capability. 
Once the user selects a particular device exposing the 
specified capability, the SmartApp gains access to that 
device. SmartApps can interact with devices by using 
events. In particular, a SmartApp can register a callback 
on a device for a condition, and whenever that condition 
becomes true, the SmartApp is given a callback with 
some optional event data. These apps provide a wide 
variety of functionality ranging from simple rule-based 
automation (“if my door lock is open, then turn on the 
lights”) to energy monitoring and saving solutions.

Why SmartThings?
We chose to analyze SmartThings in depth for several 
reasons. First, it’s a relatively mature platform with a 
growing set of apps—called SmartApps—and it sup-
ports 132 types of devices. 

Second, SmartThings shares key security design 
principles with other frameworks. Authorization and 
authentication for device access are essential in secur-
ing smart-home app platforms, and SmartThings has a 
built-in mechanism to protect device operations against 
third-party apps through so-called capabilities.

Event-driven processing is common in smart-home 
applications,5 and SmartThings allows apps to regis-
ter callbacks for a given event stream generated by a 
device. Other platforms support event-driven process-
ing too. For instance, AllJoyn supports the bus signal,6 
and HomeKit provides the characteristic notification 
API.7 Therefore, we believe lessons learned from an 
analysis of the SmartThings permission model will 
inform the early design stages of other programmable 
smart-home frameworks.

Our key finding is that overprivilege is a significant 
shortcoming of the SmartThings permission model. In 
particular, we found that SmartApps in our dataset of 499 
apps were significantly overprivileged: 55 per cent didn’t 
use all the rights to device operations that their requested 
capabilities implied, and 42 per cent were granted capa-
bilities that weren’t explicitly requested or used. In many 
cases, overprivilege was unavoidable as a result of the 

capability model’s device-level authorization design, 
and occurred through no fault of the developer. Worry-
ingly, we observed that 68 existing SmartApps use over-
privilege to provide extra features without requesting the 
relevant capabilities.

We built attacks that use overprivilege to demon-
strate its negative effects. Our attacks can inject PIN 
codes into a connected door lock, snoop on PIN codes, 
disable vacation mode, and cause fake fire alarms.

These attacks underline the need for careful permis-
sion model design as well as for stronger control over 
how apps use sensitive data. However, this is often chal-
lenging to achieve. The well-known tension between 
usability and granularity of permission models mani-
fests itself here as well. However, the lessons we’ve 
learned about how incorrectly designed models lead to 
security failures in smart homes, coupled with progress 
in permission model design in smartphones and other 
closely related spaces, can lead to improved security.

SmartThings Deep-Dive Analysis
We investigated the security of the SmartThings permis-
sion model along two dimensions: least privilege and 
sensitive-event data protection. After studying the per-
mission model and extensively testing prototype Smart-
Apps, we created a list of potential security issues.

Least-Privilege Principle Adherence
Does the capability model protect sensitive opera-
tions of devices against untrusted or benign-but-buggy 
SmartApps? It’s important to ensure that SmartApps 
request only the privileges they need and are granted 
only the privileges they request. However, we found 
that many existing SmartApps are overprivileged.

Sensitive-Event Data Protection
Which access control methods are provided to pro-
tect sensitive-event data generated by devices against 
untrusted or benign-but-buggy SmartApps? We found 
that unauthorized SmartApps can eavesdrop on sensi-
tive events.

Occurrence of Overprivilege in SmartApps
We found two significant issues with overprivilege in 
the SmartThings framework, both artifacts of the way 
its capabilities are designed and enforced. First, capabil-
ities in the SmartThings framework are coarse grained, 
providing access to multiple commands and attributes 
for a device. Thus, a SmartApp could acquire the rights 
to invoke commands on devices even if it doesn’t use 
them. Second, a SmartApp can end up obtaining 
more capabilities than it requests because of the way 
the SmartThings framework binds the SmartApp to 
devices. We detail both issues below.
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Coarse-grained capabilities. In the SmartThings frame-
work, a capability defines a set of commands and attri-
butes. Here is a small example of capability.lock:

 ■ Associated commands: lock and unlock.
 ■ Associated attribute(s): lock. The lock attribute 

has the same name as the command, but the attribute 
refers to the locked or unlocked device status.

Our investigation of the existing capabilities defined 
in the SmartThings architecture shows that many capa-
bilities are too coarse grained. For example, the auto-lock 
SmartApp, available in the SmartThings app store, 
requires only the lock command of capability  
.lock but also gets access to the unlock command, 
thus increasing the attack surface if the SmartApp is 
exploited. If the lock command is misused, the Smart-
App could lock out authorized household members, 
causing inconvenience; however, if the unlock com-
mand is misused, the SmartApp could leave the house 
vulnerable to break-ins. There’s often an asymmetry 
in risk with device commands. For example, turning 
on an oven could be dangerous, while turning it off is 
relatively safe. Thus, it’s inappropriate to automatically 
grant a SmartApp access to an unsafe command when it 
only needs access to a safe command.

To provide a simple measure of overprivilege due to 
coarse-grained capabilities, we computed the follow-
ing for each evaluated SmartApp, based on static analy-
sis and manual inspection: {requested commands and 
attributes}  – {used commands and attributes}. Ideally, 
this set would be empty for most apps. However, in our 
analysis of 499 SmartApps, we found that 276 apps are 
overprivileged due to coarse-grained capabilities.

Coarse SmartApp–SmartDevice binding. When a user 
installs a SmartApp, the SmartThings platform enumer-
ates all physical devices that support the capabilities 
declared in the app’s preferences section, and the 
user chooses the set of devices to be authorized to the 
SmartApp. Unfortunately, the user isn’t told about the 
capabilities being requested and is presented only with a 
list of devices that are compatible with at least one of the 

requested capabilities. Moreover, once the user selects 
the devices to be authorized for use by the SmartApp, 
the SmartApp gains access to all commands and attri-
butes of all the capabilities implemented by the selected 
devices’ handlers. We found that developers couldn’t 
avoid this overprivilege, because it was a consequence 
of SmartThings framework design.

More concretely, SmartDevices provide access to 
the corresponding physical devices. Besides managing 
the physical device and understanding the lower-level 
protocols, each SmartDevice also exposes a set of 
capabilities appropriate to the device it manages. 
For example, the default Z-Wave lock SmartDevice 
supports the following capabilities: capability 
.actuator, capability.lock, capability 
.polling, capability.refresh, capabil-
ity.sensor, capability.lockCodes, and 
capability.battery.

These capabilities reflect various facets of the lock 
device’s operations. Consider a case in which a Smart-
App requests the capability.battery, say, 
to monitor the condition of the lock’s battery. The 
SmartThings framework would ask the user to authorize 
access to the Z-Wave lock device (because it matches 
the requested capability). Unfortunately, if the user 
grants the authorization request, the SmartApp also 
gains access to the requested capability and all the other 
capabilities defined for the Z-Wave lock. In particular, 
the SmartApp would be able to lock and unlock the 
Z-Wave lock, read its status, and set lock codes.

To provide a simple measure of overprivilege due to 
unnecessary capabilities being granted, we computed 
the following for each evaluated SmartApp, based on 
static analysis and manual inspection: {granted capa-
bilities} – {used capabilities}. Ideally, this set would be 
empty. However, our analysis found that 213 of the 499 
SmartApps were overprivileged due to additional capa-
bilities being granted.

Insufficient Sensitive-Event Data Protection
SmartThings supports a callback pattern in which a 
SmartDevice can fire events filled with arbitrary data, 
and SmartApps can register for those events. Inside a 

Table 1. Examples of capabilities in the SmartThings framework.

Capability Command Attribute

capability.lock lock(), unlock() lock (lock status)

capability.battery N/A battery (battery status)

capability.switch on(), off() switch (switch status)

capability.alarm off(), strobe(), siren(), both() alarm (alarm status)

capability.refresh refresh() N/A
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user’s home, each SmartDevice is assigned a 128-bit 
device identifier when it’s paired with a hub. After that, a 
device identifier is stable until it’s removed from the hub 
or paired again. The 128-bit device identifiers are thus 
unique to a user’s home, which is good—possession of 
the 128-bit device identifier from one home isn’t use-
ful in another home. Nevertheless, we found significant 
vulnerabilities in the way access to events is controlled:

 ■ Once a SmartApp is approved for access to a Smart-
Device after a capability request, the SmartApp can 
monitor any event data published by that Smart-
Device. The SmartThings framework has no special 
mechanism for SmartDevices to selectively send 
event data to a subset of SmartApps or for users to 
limit a SmartApp’s access to only a subset of events.

 ■ Once a SmartApp acquires the 128-bit identifier for 
a SmartDevice, it can monitor all the events of that 
SmartDevice, without gaining any of the capabilities 
that device supports.

 ■ Certain events can be spoofed. In particular, we 
found that any SmartApp or SmartDevice can spoof 
location-related and device-specific events.

Event leakage via capability-based access. As noted 
earlier, once a user approves a SmartApp’s request to 
access a SmartDevice for any supported capability, 
the SmartThings framework permits the SmartApp to 
subscribe to all the SmartDevice’s events. We found 
that SmartDevices extensively use events to commu-
nicate sensitive data. For instance, we found that the 
SmartThings-provided Z-Wave lock SmartDevice trans-
mits codeReport events that include lock PIN codes.

A SmartApp with any form of access to the Z-Wave 
lock SmartDevice (say, for monitoring the device’s bat-
tery status) can also automatically monitor all its events 
and use that access to log the events to a remote server 
and steal lock PIN codes. The SmartApp can also track 
lock codes as they’re being used to enter and exit the 
premises, therefore tracking household members’ 
movements and possibly violating their privacy.

Event leakage via SmartDevice identifier. As discussed, 
each SmartDevice in a user’s home is assigned a ran-
dom 128-bit identifier. This identifier, however, 
isn’t hidden from the SmartApps. Once a Smart-
App is authorized to communicate with a Smart-
Device, it can read the device.id value to retrieve 
the 128-bit SmartDevice identifier. We found that a 
malicious SmartApp can directly use this identifier 
to read any events a device generates, irrespective of 
any granted capabilities.

Unfortunately, the device identifiers are easy to 
exchange among SmartApps—they aren’t opaque 

handles, nor specific to a single SmartApp. Several 
SmartApps currently exist in the SmartThings app store 
that allow remote retrieval of the device identifiers in a 
user’s home over the OAuth protocol.

Event spoofing. The SmartThings framework neither 
enforces access control around raising events nor offers 
a way for triggered SmartApps to verify an event’s 
integrity or origin. We discovered that an unprivi-
leged SmartApp can spoof both physical-device and 
location-related events.

A SmartDevice detects physical changes in a device 
and raises the appropriate event. For example, a smoke 
detector SmartDevice will raise the “smoke” event 
when it detects smoke in its vicinity. The event object 
contains various state information plus a location iden-
tifier, a hub identifier, and the 128-bit device identifier 
that’s the event source. We found that an attacker can 
create a legitimate event object with the correct identifi-
ers and place arbitrary state information. When such an 
event is raised, SmartThings propagates the event to all 
subscribed SmartApps as if the SmartDevice itself trig-
gered the event. Obtaining the identifiers is easy—the 
hub and location ID are automatically available to all 
SmartApps.

To summarize, we found that the SmartThings event 
subsystem design is insecure. SmartDevices extensively 
use it to post their status and sensitive data—111 out of 
132 device handlers from our dataset of device handler 
code raise events.2

Proof-of-Concept Attacks
Using four concrete attacks, we demonstrated how 
the overprivilege design issue weakens home security. 
We combined overprivilege with other security design 
flaws in the SmartThings framework to make the attacks 
remote and stealthy. For more details on the other 
design vulnerabilities, see “Security Analysis of Emerg-
ing Smart Home Applications.”2

Table 2 summarizes the four attacks based on inse-
cure design of the permission model in SmartThings. 
The backdoor PIN code injection attack uses coarse 
SmartApp–SmartDevice binding overprivilege to force 
an existing SmartApp to program a PIN code into a door 
lock. The overprivilege enables the attacker to inject a 
PIN code programming command into the SmartApp. 
The door lock PIN code snooping attack is a stealthy 
malware app that uses overprivilege in the event system 
of SmartThings to snoop on PIN codes as they’re cre-
ated and then leak them out. Attacks can disable vaca-
tion mode by using the lack of access control around 
the location object to trick a SmartApp into thinking 
that the home is occupied. Finally, the fake fire alarm 
attack uses a malware app that escalates its privileges by 
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stealing a device identifier and generating fake carbon 
monoxide sensor readings.

T he IoT is predicted to reach 20.8 billion con-
nected devices by 2020, with the consumer sec-

tor having the largest installed base.8 Simultaneously, 
we’re observing the emergence of programmable 
frameworks that unify disparate devices into a coher-
ent platform that supports third-party app develop-
ment. Although these third-party apps represent the 
benefits of networked and intelligent devices, they 
also represent the risk that such technologies pose. In 
this article, we surveyed the permission models of four 
recent frameworks (IoTivity, HomeKit, AllJoyn, and 
SmartThings) because a permission model is the first 
line of defense between the users’ privacy-sensitive 
data and physical devices, and attackers. A permission 
model with security design deficiencies will lead to var-
ious kinds of attacks. Our findings underline the need 
for more research on permission models and how apps 
use data once they gain access.9

Our SmartThings analysis prompted SmartThings 
developers to begin designing and implementing tech-
niques to reduce automatic overprivilege and better 

balance capability granularity and usability based on 
our ideas.2 As a first line of defense, the SmartThings 
team revised its app review guidelines to manually look 
for use and misuse of overprivilege based on the attacks 
we created. As defense in depth, SmartThings also 
revised its developer documentation to discuss security 
best practices. For example, it instructs developers to be 
precise in the kinds of events they subscribe to, and to 
not use Groovy dynamic method execution unless it’s 
explicitly guarded by statements that ensure no unin-
tended actions are performed, thus preventing remote 
attackers from exploiting overprivilege.10 
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