
Beyond Instruction Level Taint Propagation

Beng Heng Ng Earlence Fernandes Ajit Aluri Atul Prakash
Department of Computer Science and Engineering

University of Michigan
Ann Arbor, Michigan 48105, USA

Zijiang James Yang
Department of Computer Science

Western Michigan University
1903 West Michigan Avenue Kalamazoo, MI 49008, USA

ABSTRACT
Dynamic taint analysis (DTA) plays a fundamental role in
computer security research. However, current implementa-
tions of DTA are often inefficient as taint information is
propagated for each instruction. Previous work has sug-
gested propagating taint information at higher abstractions
such as functions. But, this has only been achieved by man-
ually instrumenting taint rules for library functions. Re-
search on automatically creating taint propagation rules for
higher levels of abstraction is lacking. Towards addressing
the research gap, we propose the notion of straight line code
units (SLCUs) and describe a technique to reduce higher
abstractions like functions to SLCUs. Since a basic block
is equivalent to a SLCU, current basic block summarization
techniques can be applied to SLCUs. We propose an al-
gorithm for automatically summarizing taint propagations
for SLCUs with no or single pointer indirections, which we
describe to be unaffected by memory aliasing. Preliminary
results indicate that at least 87% of the basic blocks (the
most basic form of SLCU) from a set of common Linux li-
braries fulfill this criteria.

1. INTRODUCTION
Dynamic taint analysis (DTA) is one of the two most com-

monly used dynamic analysis techniques, which are funda-
mental to computer security research [16, 5]. DTA is of-
ten used to analyze software binaries for security problems
such as buffer overflows, format string vulnerabilities [12]
and leakage of sensitive information [10]. When perform-
ing DTA on a program, untrusted or sensitive input data
from different sources such as user input, network sockets,
or files, is tainted, which are then propagated and tracked as
the program executes. Depending on the analysis objectives,
the program counter or the output data is then checked for
the presence of the taints. DTA complements static binary
analysis by providing precise information that is unavailable
in the latter.

Traditional taint propagation techniques propagate taint
information from source to destination operands for each
instruction. However, this is often slow [12, 4, 13, 19]. For
example, TaintCheck [12], a DTA tool based on Valgrind,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

can have slowdowns ranging from 3x to 37x, depending on
the type of workload.

An obvious approach to improve the efficiency of DTA is
to perform taint propagations at a higher abstraction level,
such as the basic block abstraction, instead of propagating
taint information at each instruction. Besides timing im-
provements, savings in other resources such as memory can
be expected. While some work has pointed out this opti-
mization [19], few studies actually discuss the nuances or
measure the potential gains of this approach.

Our contributions are as follows.
• We compare the advantages and disadvantages of sum-

marizing taint propagations at the basic block, loop,
and function abstractions. We discuss the effects of
memory aliasing and the resulting dilemma on whether
taint information should be propagated before or after
a basic block.
• We generalize the notion of a basic block to Straight-

Line Code Units (SLCUs) and describe how we can
reduce higher abstractions like functions to SLCUs to
which our basic block summarization algorithm can be
applied.
• We propose an algorithm for automatically generat-

ing summarized rules for taint propagations in SLCUs
with no or single pointer indirections.
• We conducted an empirical study on common Linux

libraries which shows that at least 87% of these basic
blocks satisfy our criteria of containing only single or
no pointer indirections.

2. RELATED WORK
Taint tracking related research can be grouped into three

broad categories: binary instrumentation, whole system em-
ulation, and hardware extensions. We outline the most im-
portant results related to high performance taint tracking
systems from each of these groups.

Chang et al. propose a system that performs static inter-
procedural flow analysis to determine points in a program
where an attack could take place [3]. It then performs taint
tracking instrumentation of these locations. The authors re-
port 13% slowdown on server programs. The method relies
on the existence of source code, whereas our system does
not have this requirement. Similarly, in [11], Lam et al.
propose a compiler that performs taint instrumentation and
requires source code. It is not automatic since it relies on the
programmer to specify interception points and proxy func-
tions. This is a barrier to its widespread adoption since the
taint tracking logic needs to be manually optimized by the
programmer. TaintTrace, suggested by Zhao et al., uses Dy-
namoRIO instrumentation on binaries to minimize register
spilling by making use of dead registers to store taint val-

ues [4]. They do not try to minimize propagation overhead,
which is what we are mainly concerned with.

Another methodology seen in the literature [13, 8, 15] is to
maintain two versions of a code unit, a taint tracked (slow)
version and an optimized (fast) version. For example, in
LIFT [13], a work by Qin et al., the Fast-Path optimization
verifies whether the live-ins of a code unit (basic block or
hot trace) are safe. If they are, the faster non-taint-tracked
version is executed, otherwise the slow version is executed.
Note that we provide this guarantee as well and at the same
time provide a best effort taint tracking through “unsafe”
code units via our basic block summaries. Therefore, their
slow version is potentially executed faster on our system.
Similarly, LIFT dynamically switches between heavily in-
strumented QEMU and faster XEN virtual machines. Sax-
ena et al. use static analysis to determine what code is on
the fast-path [15].

Bosman et al. re-implement an emulator with taint track-
ing in mind in their work on minemu [2]. They make use
of SSE registers to minimize register pressure on traditional
x86 arch. This is orthogonal to our approach and it can draw
further benefits from summarized taint tracking. RIFLE [17]
is a compiler to convert conventional ISA to information-flow
security ISA. This is similar to previous mirror-approaches
that insert a taint-instruction corresponding to a program
instruction. The ISA defines additional registers to hold
taint values.

Another approach to improve DTA performance is to par-
allelize taint tracing. In [14], Ruwase et al. present tech-
niques on how to execute taint tracking code in parallel by
relaxing the rules of taint propagation. While this does pro-
duce speedup, it is orthogonal to our work. We focus on re-
defining the taint data flow problem in terms of basic block
summarization.

In a closely related work, Jee et al. ?? separate the taint
tracking logic from the program logic and apply compiler op-
timization techniques on the former to minimize the track-
ing code. Their main goal is to remove redundant tracking
instructions by defining a Taint Flow Algebra that helps in
applying dead code elimination, copy propagation and other
standard optimization techniques to the taint tracking logic.
While our approach is similar in thought, we aim to achieve
near elimination of taint tracking logic through a basic block
by constructing a taint propagation summary for it. Our
ideas, with minimal or few changes can be easily extended
to higher levels of abstractions such as loops and functions.

Another related work, that we drew inspiration from is
TaintEraser by Zhu et al. ??. This work proposes turn-
ing off taint propagation at the function level, and use a
patching function to propagate taints between the inputs
and outputs. They achieved roughly 10.7x performance im-
provement. However, TaintEraser uses “human experts” to
generate the summaries of highly utilized functions. We
make a step towards the automated generation of summaries
for basic blocks.

3. POSSIBLE APPROACHES
An important consideration when approaching the prob-

lem of optimizing taint propagations is the different abstrac-
tions, i.e., basic block, loop, or function level abstractions,
since each abstraction will require a different strategy. Per-
haps the primary advantage of the basic block abstraction is
simplicity. A basic block, defined as a contiguous sequence
of instructions with a single entry and a single exit point, al-
lows classical static data-flow analyses such as reaching def-
initions to be applied. Moreover, straight-line code enables
robust reasoning. These factors enhance the correctness of
the proposed strategy.

Besides summarizing taint propagations at the basic block

Figure 1: Process overview.

level, another approach is to summarize them at the loop
level. For loops with known bounds, static analysis is straight-
forward using techniques such as loop unrolling. However,
for loops whose bounds are unknown, this becomes a chal-
lenge. One possibility to resolve this may be to leverage
symbolic execution to compute the upper bounds for these
loops. The outcomes for the static analysis can be either
constant or varying taint propagations. For constant taint
propagations, the sources and sinks remain unchanged for
every iteration. For such cases, the taint information need
only be propagated once regardless of the number of times
the loop iterates. In contrast, for varying taint propagations,
the sinks and sources differ between different iterations for a
single run of the loop, or differing sinks and sources between
different runs of the loop. Such loops may not be amenable
for taint propagation summarizations and may require sum-
marization at lower abstractions.

For nested loops, the summarizations may be performed
prior to and after the execution of an inner loop. This is be-
cause taint propagations for the inner loop may be depen-
dent on taint propagations before entering the inner loop.
The taint propagations for the inner loop may also affect
the taints after exiting the loop. Further study is needed
to determine if the overheads for such a mechanism exceed
that of summarizing the taint propagations at a lower ab-
straction.

When using the function abstraction for summarizing taint
propagations, there are several advantages. Firstly, there are
likely more opportunities to identify redundant taint propa-
gations at the function abstraction, and thus leading to bet-
ter optimizations. Function abstractions may also be better
suited for analysis by normal users and developers. For ex-
ample, it may be more semantically intuitive to the user that
a taint is propagated through a certain function, rather than
a basic block.

However, complexities can arise due to the presence of
branches and loops in functions. One potential pitfall is the
path explosion problem. Function calls within a function
can complicate analysis, particularly in the case of recursive
functions. For a normal function call within a function, the
approach can be similar to loops, i.e., summarizations are
performed prior and after the function call. For recursive
functions, if the sources and sinks are constant regardless of
the recursion depths, then summarization is straightforward.
On the other hand, if the sources and sinks vary, then the
summarization may be performed at a lower abstraction.

4. OVERVIEW
Figure 1 provides an overview of the process. For the ease

of subsequent analysis, the executable binary to be analyzed
is first statically translated into an Intermediate Represen-
tation (IR) that is free of side-effects. An example of such a
side-effect is the modification of the eflags register by x86
arithmetic instructions.

Next, we statically analyze the IR to produce Straight
Line Code Units (SLCUs). A SLCU is essentially a sequence
of instructions along the same execution path. We define
inputs of a SLCU as register reads and memory loads, and
outputs as register writes and memory stores. The set of
taint sources is a subset of the inputs. Similarly, the set of
taint sinks is a subset of the outputs.

The SLCUs are then used to generate a shunt table for
looking up taint propagation rules during dynamic analysis.
A shunt table contains rules that specify the optimized taint

propagations. Each rule, (sig, sink, src1, src2, . . . , srcn), which
specifies that taint records from src1, src2, . . . , srcn need to
be propagated to sink for a SLCU having signature sig
(which can be the address).

During dynamic taint propagation, our system looks up
the shunt table to find taint propagation rules for the SLCU.
If rules exist, the SLCU is executed without the instruction-
level taint propagation logic. Taint propagations are carried
out based on the rules. On the other hand, if no rule ex-
ists, then our system falls back to propagating taints at the
instruction-level.

A disadvantage of the SLCU abstraction is the overhead
needed to look up and evaluate the taint propagation rules
for each SLCU. Besides, if the SLCU happens to be a basic
block with few optimization opportunities, the overhead may
exceed the savings over per-instruction taint propagation.
However, we envisage that proper heuristics to guide the
process will result in savings.

A heuristic we are developing involves an instruction cost
model. While generating the SLCU summaries, we need to
speculate about the potential savings and summarize units
only when it is feasible for us. We measure this using esti-
mated overheads of executing a summary of an SLCU and
executing normal per-instruction taint propagation. Let ∆s

be the former, and CT (I) be the cost associated with ex-
ecuting the corresponding taint instructions for a machine
instruction I. Then, the heuristic can be expressed as:

∆s −
∑

∀IεSLCU CT (I) < 0

The overhead to execute a set of taint instructions for ev-
ery original instruction is the sum of the costs as determined
by the cost model. This model gives us an estimate on the
number of processor cycles it takes to complete the taint
propagations for an SLCU. For example, a mov instruction’s
corresponding taint instructions can involve two loads: one
arithmetic and one store operation. In this way, every ma-
chine instruction has an estimated cost associated with it.
Hence,

∑
∀I CT (I) represents the cost of executing SLCUs

with per-instruction taint tracking. The overhead to execute
the summary, ∆s, involves the overhead to lookup rules for
all live-outs of the unit, the overhead to generate the instru-
mentation and the number of loads, arithmetic and stores
needed for the summary. If there is a distance between the
two overheads, which is determined empirically, we conclude
that it is feasible to summarize an SLCU.

To facilitate our discussions, we will use the syntax for the
C language to describe the instructions. However, to keep
our discussion focused on the optimization techniques, we
will assume that the operations do not have side-effects. We
also limit the variables to represent two types of registers:
system registers (e.g., eax, ebx, ecx, etc.), and temporary
registers (tn, where n is an integer). Temporary registers
are used to store temporary values in-between computations.
The use of temporary registers allows for the Static Single
Assignment (SSA) property to be upheld. The SSA property
greatly simplifies analysis since each temporary register is
only defined once.

4.1 Taint Propagation Syntax
Taint records can be read/written from/to different loca-

tions. We now explain the syntax we will use to describe
the propagation of the taint records for both the taint prop-
agation syntax and the taint propagation rules. τ(a) returns
the set of taint records for variable a, while τ(∗a) returns the
set of taint records at the location pointed to by a. ς(b, T)
overwrites the existing taint records for b with those for T .
The only operator allowed on two sets of taint records is the
union operator, i.e., ∪.

For simplicity, we will use the taint policy described in

Instruction Taint Policy
t = ∗u ς(t, τ(∗u))
t = g ς(t, τ(g))
∗t = u ς(∗t, τ(u))
g = u ς(g, τ(u))
t = u ς(t, τ(u))
t = 〈unop〉u ς(t, τ(u))
t = u〈binop〉v ς(t, τ(u) ∪ τ(v))

Table 1: Taint policy. t, u, and v denote temporary registers.
g denotes a system register.

Figure 2: Example for summarizing taint propagations at
function level.

Table 2. Constants are never tainted. The simplistic taint
policy does not describe control-flow taint propagations for
implicit flows, which we will defer to future work.

5. FROM FUNCTION TO SLCU
Summarizing taint propagations at the function level can

provide more opportunities for performance gains. For ex-
ample, the overheads incurred for looking up the propaga-
tion rules can be amortized over more basic blocks. The in-
tuition is that the summarization techniques are essentially
the same for different abstractions if the input is straight-
line code, i.e., the analysis for a function without branches is
the same as a basic block. Thus, towards summarizing taint
propagations at the function level, we propose the following
steps.

1. Identify all paths in a function.
2. Combine all basic blocks along each path to form SLCUs.

The result is a straight-line code for each path.
3. Summarize taint propagations for each SLCU to gen-

erate shunting rules.
A challenge that may arise with identifying all the paths

in a function is the path explosion problem. To mitigate this
problem, we propose only summarizing taint propagations
for functions with cyclomatic complexity of less than 15.
We examined 582,959 functions from executables on various
Linux distributions and found that 455,078 (78.06%) of the
functions satisfy this criteria.

We will use the example in Figure 2 to illustrate our pro-
posed steps. The paths identified will be as follows.

1. bb1 → bb2 → bb3 → bb6
2. bb1 → bb2 → bb4 → bb6
3. bb1 → bb5 → bb6
Next, we can join the basic blocks along each path to ob-

tain SLCUs. For each SLCU, we can apply the summariza-
tion techniques to obtain the summarized taint propagation
rules. We use the path conditions to describe the paths.
The summary table is shown in Table 2, where we use Pn
to indicate the predicate at line n.

Path Conditions Summarized Taint
¬P2 ∧ ¬P3 ς(r, ∅)
¬P2 ∧ P3 ς(r, {τ(c)})
P2 ς(r, {τ(i)})

Table 2: Taint summaries for various paths in Figure 2. Pn
refers to the predicate on line n.

1: t1 = *eax
2: *ebx = t2
3: ecx = *t1

(a) Example 1.

ς(∗ebx, τ(t2))
ς(ecx, τ(∗(∗eax)))

(b) Taint rules for Example 1.

Figure 3: Example 1 for optimized taint rules.

Once a summary table has been generated using the SLCU
summarization algorithm, we need to form indices into this
table at runtime. As our analysis is done statically, we need
a mechanism to construct a path condition for an actual code
path that was executed at runtime. We also need to insert
the summarized taint code just before various sink points
in the function since the table expresses the taint values of
registers/memory at a sink point. Therefore, we propose an
instrumentation that signals what branch is taken at each
condition. When we reach a sink point (can be a return), we
insert code to execute a summary. This summary is pulled
in from a table indexed by path condition as stated earlier.
Hence, a function is summarized. The key insight here is
that we can reduce the function abstraction to a straight-
line code abstraction and apply our SLCU summarization
algorithm. Hence, our techniques are independent of the
code abstraction.

5.1 Taint Propagation Dilemma
Summarized taint information can be propagated either

before or after the SLCU. However, memory aliasing can
lead to a dilemma as to when the taint information should be
propagated. Memory aliasing, which can be detected using
various techniques [6, 1, 7], occurs when different registers or
memory locations can reference the same memory location.
The dilemma arises if the data stored at the aliased memory
location is the address of another memory location.

Suppose we have a SLCU as shown in Figure 3a, where
eax and ebx are aliasing, i.e., they contain the address of
the same memory location. The corresponding taint prop-
agation rules are shown in Figure 3b. Figure 4 illustrates
the pointer status before and after executing the SLCU. If
the taint rules are effected before the SLCU is executed, the
resulting taint records for ecx will be N as shown in Figure
4. This is the expected result since addr1 is saved in t1 and
used after Line 2. However, if the rules are effected after
executing the SLCU, the resulting taint records for ecx will
erroneously become � as in Figure 4. At Line 2, ∗ebx is
updated with the value of t2, and since eax aliases with ebx,
this implies ∗eax is also updated.

On the other hand, suppose we have a SLCU as shown
in Figure 5a with taint rules shown in Figure 5b. Similar
to Example 1, Figure 4 shows the pointer status before and
after executing the SLCU. If the taint rules are effected after
the SLCU is executed, the taint records for ecx will be �,
which is expected. However, if the rules are effected before
executing the SLCU, the resulting taint records for ecx will

(a) Before SLCU. (b) After SLCU.

Figure 4: Pointer status for both Example 1 and 2. N and �
represent the taint records at addr1 and addr2 respectively.

1: *ebx = t2
2: t1 = *eax
3: ecx = *t1

(a) Example 2.

ς(∗ebx, τ(t2))
ς(ecx, τ(∗(∗eax)))

(b) Taint rules for Example 2.

Figure 5: Example 2 for optimized taint rules.

1: t3 = esp
2: t1 = t3 + 0x18
3: t4 = *t1

(a) Single indirection.

1: t3 = esp
2: t1 = t3 + 0x18
3: t4 = *t1
4: t5 = t4 + 0x4
5: t6 = *t5

(b) Double indirection.

Figure 6: Examples of pointer indirections.

be N, which is incorrect, since we expect ∗eax to be updated
to addr2 before the taint records are propagated.

This results in a dilemma between propagating the taint
records before or after the SLCU. In some cases, execut-
ing taint summaries before the block is correct and in some
cases, executing the summary after the block is correct. To
remediate the situation, we propose optimizing only SLCUs
with at most single pointer indirections. In other words, we
ignore SLCUs that have memory loads with more than one
level of indirection.

An additional source of nondeterminism is that if multiple
indirections were summarized, it is not sufficient to make a
decision between executing the summary before or after the
block. Consider Figure 6a which shows an example for a
single indirection, while Figure 6b shows an example for a
double indirection. The optimized taint rule for the instruc-
tions in Figure 6a will be ς(t4, τ(∗(esp + 0x18))). In com-
parison, the taint rule for the instructions in Figure 6b will
be ς(t6, τ(∗(∗(esp+0x18) +0x4))). If we look at the doubly
indirected rule, we cannot know in advance what is the fi-
nal pointer value until the statement that computes the first
indirection has completed. Hence, the summary code needs
to be sprayed into the block as well, and this will result in
additional overhead.

An additional advantage of limiting the optimizations to
SLCUs with no loads or first-order loads is simplicity when
parsing the taint rules. One can consider parsing the rules
to incur overheads, thus having to parse and evaluate rules
for high-order loads may incur overheads that exceed the
savings from the optimizations.

5.2 Automated Taint Summarization
Towards automatically computing the taint sources and

sinks at the SLCU abstraction, we propose the algorithm
shown in Figure 7. The ComputeTaintProps function takes
in a sequence of instructions, live-ins, and live-outs for a
SLCU and returns an ordered list where each element spec-
ifies a taint sink and a set of taint sources. The intuition
behind the algorithm is that since branches are removed
from a SLCU, the steps to propagate taint information dur-
ing dynamic analysis will be the same as those during static
analysis. Thus, assuming no side-effects, one can simulate
the taint propagation steps trivially and extract the result-
ing taint sources and sinks.

The algorithm begins by initializing the initial pseudo-
taint to a unique value, which is also added to the last
pseudo-taint set. The pseudo-taints are used to emulate
taint information, thus allowing us to keep track of the orig-
inating taints. Every instruction in the SLCU is then ex-
amined. The last pseudo-taint sets for all right-hand side
operands are union-ed in a set T , which is then updated to
the last pseudo-taint set of the written operand.

Finally, the algorithm extracts all sinks that are found in
the live-out variables and gets all the originating sources us-

function ComputeTaintProps(SLCU slcu, LiveIns I, LiveOuts O)
pseudo taint = 0
Map src . Tracks initial taints for sources
Map isrc . Tracks initial taints for indirected sources
Map last . Tracks last taints for locations
Map ilast . Tracks last taints for indirected locations
for each i in I do

src[i] = pseudo taint
isrc[i] = pseudo taint
last[i] = {pseudo taint}
ilast[i] = {pseudo taint}
pseudo taint = pseudo taint+ 1

end for
for each instruction i in slcu do

T = {}
rop = Get right operands for i
for each right operand ro in rop do

if UsedAsPointer(i, ro) then
T = T ∪ ilast[ro]

else
T = T ∪ last[ro]

end if
end for

lop = Get left operand for i
if UsedAsPointer(i, lop) then

ilast[lop] = T
else

last[lop] = T
end if

end for

r = new Map() . Maps sinks to resolved taint sources
ResolveIndirection(src, isrc, last, O, r)
ResolveIndirection(src, isrc, ilast, O, r)
return r

end function

function ResolveIndirection(Map src, Map isrc, Map last, Live-
Outs O, Map output)

for each l in last do
if l found in O then

V = {}
for each s in last[l] do

if s found in src then
src = Get source from src and s

else if s found in isrc then
src = Get source from isrc and s
Mark src for indirection

end if
V = V ∪ {src}

end for
Mark l for indirection if l is from ilast.
output[l] = V

end if
end for

end function

Figure 7: Algorithm for simulating taint propagations.

ing the pseudo-taints. If a pseudo-taint is found in src, then
no indirection is required, i.e., taint information is propa-
gated from the location specified. Otherwise, if it is found
in isrc instead, then a single indirection is required, i.e.,
taint information is propagated from the memory pointed
to by the location.

5.2.1 Algorithm Explanation
Consider the example in Figure 8. We will use it to demon-

strate several important facets of our technique. The algo-
rithm starts out by maintaining sets for taint values for all
variables concerned with a sink. In Table 3, the following
steps are represented.
Step 0 Initialization. All taint sets are initialized to ∅.

src(.) represents the initial taint value of a register
or memory location.

Step 1 The assignment of ebx to t3 is simulated. This
results in the sets being transferred.

Step 2 Similarly, another assignment is processed.
Step 3 Dereference. At this stage, the algorithm notices a

dereference operation. Hence the set of t4 is updated
to indicate this fact. Observe that the taint set for t4
is now {src(*ebx)}.

Step 4 Union. Since t4 and edx have taint sets, the taint

live-ins = { ebx, edx }
live-outs = { ecx, eax }

1: t3 = ebx
2: t1 = t3 + 0x18
3: t4 = *t1
4: ecx = t4 + edx
5: t4 = 5
6: eax = t4

Figure 8: Example SLCU.

Library %Amenable
libgcrypt.so.11.5.2 93.41
ld-2.11.1.so 87.12
libcrypt-2.11.1.so 88.84
libc.so.6 87.91
libdbus-1.so.3.4.0 94.29
libdl-2.11.1.so 93.12
libm.so.6 98.46
libpthread-2.11.1.so 94.51
libz.so.1.2.3.3 87.48

Table 4: Percentage of basic blocks with no or single pointer
indirections.

set for ecx will be the union. This is in accordance
with our taint policy.

Step 5 Summary. t4 is assigned a constant and this is as-
signed to eax. Hence the taint set for eax is ∅.

6. EXPERIMENTS

Prevalence of Pointer Indirections.
To estimate the number of basic blocks (the most basic

form of SLCU) amenable to the generation of shunting ta-
bles, we built an IDA plugin that analyzed whether basic
blocks contained only single pointer indirections or multi-
ple pointer indirections as well. The plugin converted x86
disassembly (from IDA Pro) to VEX IR. We then analyzed
every load operation for each basic block and computed a
backward slice of its operands. This allowed us to check if a
load was dependent on another prior load. We ran our anal-
ysis on a sampling of commonly used Linux libraries and
the results are summarized in Table 4. The second column
shows the percentages of total basic blocks that do not have
multiple indirections. We observe that at least 87% of the
basic blocks in the libraries are suitable for summarization
by our proposed algorithm.

Overheads.
Next, we examined tainting overheads on TEMU [18], an

extension of QEMU. We chose TEMU for its ability to prop-
agate taints system-wide. The following experiments were
conducted on a machine that has an Intel Core I7-3770 pro-
cessor and 32 GB RAM. The slowdowns ranged from about
8.8x to 1,775.5x for inputs (prime numbers) 3, 2000003,
4000037, 6000011, 8000009, 10000019, and 12000017. When
the input is 12,000,017, the test program was not able to run
to completion on TEMU due to insufficient memory. The
results clearly show that work remains to improve the perfor-
mance of tainting frameworks. However, our work is orthog-
onal to improving the performance of individual frameworks.
Instead, we are focused on general taint summarization tech-
niques that can be applied towards different frameworks.

We evaluated the potential gains that can be achieved by
manually summarizing taint propagations at the basic block
and loop abstractions for a test program shown in Figure
9. For the basic block abstraction, the taint propagation
overheads can be reduced by between 72.77% and 77.84%,
while for the loop abstraction, the overheads can be reduced
between 87.02% and 98.03%.

Step t1 t3 t4 ebx edx ecx eax
0 ∅ ∅ ∅ {src(ebx)} {src(edx)} ∅ ∅
1 ∅ {src(ebx)} ∅ {src(ebx)} {src(edx)} ∅ ∅
2 {src(ebx)} {src(ebx)} ∅ {src(ebx)} {src(edx)} ∅ ∅
3 {src(ebx)} {src(ebx)} {src(∗ebx)} {src(ebx)} {src(edx)} ∅ ∅
4 {src(ebx)} {src(ebx)} {src(∗ebx)} {src(ebx)} {src(edx)} {src(∗ebx), src(edx)} ∅
5 {src(ebx)} {src(ebx)} ∅ {src(ebx)} {src(edx)} {src(∗ebx), src(edx)} ∅

Table 3: Example for computing summary.

1: int bruteForcePrimalityTest(unsigned int n) {
2: for (unsigned int i = 2; i < n; i++) {
3: if (n % i == 0) return 0;
4: }
5: return 1;
6: }

Figure 9: Test function that computes the primality of input.

7. CONCLUSIONS
DTA is slow and thus limiting its usability in security

research. While the usefulness of DTA has been demon-
strated in discovering security issues [16, 5] such as buffer
overflows, format string vulnerabilities [12] , and sensitive
information leakage [10], it is still not widely adopted, par-
ticularly in resource-constrained scenarios such as on mobile
devices and browsers. The additional overheads associated
with DTA lead to increased latency or, for mobile devices,
decreased battery life. This limits the usefulness of DTA to
offline analysis, which allows a window of opportunity for at-
tacks to occur. Towards achieving real-time DTA, research
is required to improve its performance.

Summarizing taint propagations is an intuitive approach
to improve DTA’s performance and has been suggested [19],
but there has been no actual implementation beyond man-
ually optimizing the taint propagations. Towards closing
this research gap, we explored the nuances of summarizing
taint propagations and estimated the potential gains of this
approach.

We discuss the advantages and disadvantages of summa-
rizing taint propagations at basic block, loop, and function
abstractions. Based on these observations, we introduced
the concept of the SLCU as a unit of summarization for
taint propagations. The SLCU is attractive because higher
code abstractions can be reduced to it, and they can be au-
tomatically summarized.

We also examine the effects of memory aliasing on choos-
ing where to execute the summarized taint propagations,
and propose the SLCUs be used as the basic unit for sum-
marization. Our results show that approximately at least
87% of the basic blocks (the most basic form of an SLCU)
in our test set of popular linux libraries fulfill this criteria,
thus suggesting potential performance gains from optimizing
such SLCUs should be significant. Additionally, we propose
an algorithm for automatically summarizing taint propaga-
tions for SLCUs.

Using our analysis and experimental results as founda-
tion and motivation, our future work will be towards fully
automating taint propagation summarizations, thus making
DTA more practical.

8. REFERENCES
[1] G. Balakrishnan and T. Reps. Analyzing Memory Accesses in

x86 Executables. In In CC, pages 5–23. Springer-Verlag, 2004.
[2] E. Bosman, A. Slowinska, and H. Bos. Minemu: The World’s

Fastest Taint Tracker. In Proceedings of the 14th international
conference on Recent Advances in Intrusion Detection,
RAID’11, pages 1–20, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] W. Chang, B. Streiff, and C. Lin. Efficient and Extensible
Security Enforcement using Dynamic Data Flow Analysis. In
Proceedings of the 15th ACM conference on Computer and
communications security, CCS ’08, pages 39–50, New York,
NY, USA, 2008. ACM.

[4] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace:
Efficient Flow Tracing with Dynamic Binary Rewriting.
Computers and Communications, IEEE Symposium on,
0:749–754, 2006.

[5] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dynamic
Taint Analysis Framework. In Proceedings of the 2007
international symposium on Software testing and analysis,
ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[6] S. Debray and R. Muth. Alias Analysis of Executable Code. In
In POPL, pages 12–24, 1998.

[7] M. Fernández and R. Espasa. Speculative Alias Analysis for
Executable Code.

[8] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical Taint-Based Protection using Demand Emulation. In
Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, pages
29–41, New York, NY, USA, 2006. ACM.

[9] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August,
and A. D. Keromytis. A General Approach for Efficiently
Accelerating Software-based Dynamic Data Flow Tracking on
Commodity Hardware. In In Proc. of the 19 th NDSS, 2012.

[10] H. C. Kim, A. D. Keromytis, M. Covington, and R. Sahita.
Capturing Information Flow with Concatenated Dynamic Taint
Analysis. In ARES, pages 355–362. IEEE Computer Society,
2009.

[11] L. C. Lam and T.-c. Chiueh. A General Dynamic Information
Flow Tracking Framework for Security Applications. In
Proceedings of the 22nd Annual Computer Security
Applications Conference, ACSAC ’06, pages 463–472,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. 2005.

[13] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. LIFT:
A Low-Overhead Practical Information Flow Tracking System
for Detecting Security Attacks. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 39, pages 135–148, Washington,
DC, USA, 2006. IEEE Computer Society.

[14] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan. Parallelizing Dynamic
Information Flow Tracking. In Proceedings of the twentieth
annual symposium on Parallelism in algorithms and
architectures, SPAA ’08, pages 35–45, New York, NY, USA,
2008. ACM.

[15] P. Saxena, R. Sekar, and V. Puranik. Efficient Fine-grained
Binary Instrumentation with Applications to Taint-Tracking. In
Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, CGO ’08,
pages 74–83, New York, NY, USA, 2008. ACM.

[16] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever
Wanted to Know About Dynamic Taint Analysis and Forward
Symbolic Execution (but might have been afraid to ask). In
Proceedings of the IEEE Symposium on Security and Privacy,
2010.

[17] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. I.
August. RIFLE: An Architectural Framework for User-Centric
Information-Flow Security. In Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 37, pages 243–254, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] H. Yin and D. Song. TEMU: Binary Code Analysis via
Whole-System Layered Annotative Execution. Technical Report
UCB/EECS-2010-3, University of California at Berkeley,
January 2010.

[19] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall.
TaintEraser: protecting sensitive data leaks using
application-level taint tracking. SIGOPS Oper. Syst. Rev.,
45(1):142–154, Feb. 2011.

