
Android UI Deception Revisited:
Attacks and Defenses

Earlence Fernandes, Qi Alfred Chen, Justin Paupore,
Georg Essl, J. Alex Halderman, Z. Morley Mao, Atul Prakash

{earlence,alfchen,jpaupore,gessl,jhalderm,zmao,aprakash}@umich.edu
University of Michigan, Ann Arbor

Abstract. App-based deception attacks are increasingly a problem on
mobile devices and they are used to steal passwords, credit card num-
bers, text messages, etc. Current versions of Android are susceptible to
these attacks. Recently, Bianchi et al. proposed a novel solution “What
the App is That” that included a host-based system to identify apps to
users via a security indicator and help assure them that their input goes
to the identified apps [7]. Unfortunately, we found that the solution has
a significant side channel vulnerability as well as susceptibility to click-
jacking that allow non-privileged malware to completely compromise the
defenses, and successfully steal passwords or other keyboard input. We
discuss the vulnerabilities found, propose possible defenses, and then
evaluate the defenses against different types of UI deception attacks.

1 Introduction

App-based user-interface (UI) attacks pose an increasing threat to smartphone
users [30,9,29]. In such attacks, a malicious app tricks the user into entering
sensitive input into a window the malware controls or providing incorrect input
into a window the malware does not control. UI attacks are particularly serious
since they collect or control information at the end point closest to the user.
Once a malicious app gets a foothold on a mobile device, it is possible for it
to steal credentials and cause the user to grant additional privileges, totally
compromising the device.

One class of such attacks is app-based phishing. For example, svpeng is a
malicious mobile app that deceives the user into providing sensitive information,
including bank credentials and credit card numbers, to a window that the at-
tacker controls (see Figure 1). This deception can be stealthy and convincing
due to the rich ways in which modern mobile apps share the screen. We discuss
other types of attacks in Section 2.

UI deception attacks are possible due to two primary reasons: (a) The smart-
phone GUI environment is complex and allows for intricate interactions between
GUIs to support a multitude of use cases, and (b) Users cannot verify the prove-
nance of an app (or window) they are interacting with. A few approaches have
been attempted to defend against these attacks, for example DECAF [23] uses

dynamic app exploration to detect ad UI fraud, and Liu et al. [24] use OCR tech-
niques to automatically detect spoofed keyboards. However, these techniques are
limited to specific types of UI attacks, and are usually based on heuristics and
not foolproof.

A more general defense approach against UI deception was recently proposed
by Bianchi et al. and involves a two-layered defense consisting of a static analysis
and a runtime security indicator modeled after the well-known HTTPS lock icon
and EV infrastructure [7]. Bianchi et al. conducted a user study that established
that the security indicator helped 76% of users correctly identify UI deception
under a particular attack setting.

Since Bianchi et al. strike directly at the root cause of the problem—lack
of attribution, we believe this is the right approach to tackling UI deception.
Therefore, our aim is to investigate the security properties of this defense in
further detail.

The first part of our work finds that the state-of-the-art defense is still vul-
nerable to a subtle form of clickjacking attack that we built. Our clickjacking
attack exploits a race condition and uses a newly discovered IPC side-channel to
precisely time the display of attack windows to steal user input without causing
any change in the visualization of the security indicator.

The second part of our work discusses challenges in achieving a secure defense
against UI deception. The primary challenge is ensuring temporal integrity of
the security indicator in a seamless and correct way. To that end, we introduce
the concept of an Overlay Mutex, whose purpose is to give the user a guarantee
that no other windows may interfere with the current GUI the user is interacting
with. The following are our contributions:

1. New Attacks: We analyze the security of a state-of-the-art defense against UI
deception and discover a subtle class of clickjacking attacks. Furthermore,
we introduce a new IPC-based side-channel on Android and use it to elude
security checks proposed in prior defenses. To the best of our knowledge, this
is the first known exploitation of Android Binder IPC statistics to enhance
UI deception (Sections 3, 4). We have uploaded demo videos [13], and proof-
of-concept code [1] of our work.

2. New Defenses: We introduce the Overlay Mutex as a UI stack modification
and discuss how it achieves temporal integrity for the security indicator,
even in the presence of sophisticated, side-channel based clickjacking attacks.
Our design is intended as an addition to the work of Bianchi et al., thereby
extending the state of the art in UI deception defense (Section 5).

3. Evaluation: We evaluate our defense against known UI deception and against
our new side-channel based clickjacking attack and find that the overlay mu-
tex successfully ensures temporal integrity of the security indicator, helping
to block clickjacking attacks.

2 Threat Model and Example UI Attacks

Our threat model assumes that the Android OS is not compromised via root
exploits. Malicious apps are assumed to be unprivileged, which is the norm on

Fig. 1. The svpeng malware overlays
Google Play with a phishing window so-
liciting credit card details.

Activity 1

Activity 2

Activity 1

Activity 2

Bank Login

Fake Login

Activity 1

Activity 2

Bank Login

Topmost Activity
=>
Foreground Activity

t1 t2 t3 t4

Bank Login

Foreground Activity

User launches
genuine bank
app

Fig. 2. An attack scenario to steal bank-
ing passwords. Alice launches the genuine
bank app at t1. Mallory, the attacker, de-
tects a change in the activity stack at time
t2 and immediately injects the fake lo-
gin activity at t3. After Alice provides the
password, Mallory’s fake login activity re-
moves itself simulating a failed login at-
tempt and reveals the real login activity.
Ideally, Mallory wants (t2 - t1) and (t3 -
t2) to be small. Real attacks achieve this
in approximately 45ms.

Android. Prior work showed that even unprivileged apps on Android can spoof
other apps to steal input, overlay windows of other apps, and perform activity
hijacking attacks to inject overlay windows when passwords are entered [11,17,7].
We also note that Trojan apps have been successfully distributed on the Play
Store [22,33]. We assume that soft-keyboards are not compromised or malicious.
Recent research has made strides in achieving this goal [10]. We now discuss
examples of powerful attacks that are possible under our threat model.

Direct Phishing. This type of attack pops up a window soliciting sensitive
information, such as passwords, by presenting a malicious window (only associ-
ated with a background service) that looks exactly like a trusted app window. A
sophisticated example of this attack is mentioned by Felt et al. [8], where a mali-
cious app embeds a Facebook Like button. When the user clicks on this button,
the attacker presents a malicious Facebook login window copy and steals login
information. Other variants involve displaying attack windows out of context to
the user and mimicking trustworthy screens.

Activity hijacking. A recently discovered malware strain—Trojan-
Banker.AndroidOS.Svpeng.A [21], a member of the well-known svpeng
family performs context-sensitive phishing. Figure 1 is a screenshot of the
attack in action. Once on the device, it waits until the screen displays the
AssetBrowserActivity of the genuine Play Store and then pre-empts the UI
to display its fake version of the authentic credit card dialog.

The general structure of such attacks is shown in Figure 2. The crucial parts
involve detecting a state-change in the UI and precisely timing the launch of
a spoofed activity soliciting credentials. This kind of attack is context-sensitive
because users are lulled into a false sense of security since they are within a

genuine app. However, the attacker deceives users through a quick and well-
timed overlay [3,4,12]. Unprivileged malware can also use a recently discovered
side-channel that leaks UI state transitions to build precisely timed UI deception
attacks [11].
Clickjacking. In a classic clickjack attack, an attack UI element is displayed
just in time to steal a portion of user input without alerting the user [20], [5].
On Android, different kinds of clickjacking is possible. Attackers can use Toast
windows (transient windows) to steal input and let that input passthrough to the
underlying window. Attackers can also randomly display transparent windows
that grab input and do not let it go to the underlying window, thus stealing
portion of the input and simulating a random failure that explains why an input
did not appear on the underlying window. This attack is interesting because
even in the presence of security indicator-like defenses, users might miss changes
because the attack relies on quickness of UI transitions and the inability of the
human motor system to easily cancel actions once issued [5].

3 What The App Is That?

Recently, Bianchi et al. introduced a defense against UI deception [7] (What the
App is That—WhatTheApp for short in this paper). This system consists of two
portions: (1) a static analysis portion that is used to flag apps that may perform
UI deception attacks for execution at an App Store and (2) a security-indicator
based Android system in which apps are EV-certified and the security indicator
provides a visual indicator of any UI deception attempts by background apps.
Bianchi et al. note that while the static analysis may catch some instances of UI
deception, the analysis is intended as a market-level tool and not as a complete
defense against UI deception. In fact, the XCodeGhost attack on the Apple
vetting process is clear evidence that on-device solutions are necessary [2].

Bianchi et al. address that need by including an on-device defense mechanism,
partly based on the security indicator design of the HTTPS lock icon and EV
bar in browsers. They propose a clever security bar for mobile devices that uses
a reserved portion of the screen to identify the top activity to users as well
as indicate via a lock icon whether the display is tampered with (Figure 3).
They conducted a human subjects study where 76% of participants correctly
determined when UI deception attacks took place under an attack setting. Based
on a security indicator design in [17], the security bar consists of a security image
only known to the OS to further prove the authenticity of the indicator. Based
on the HTTPS lock icon, they included a lock icon which could be green (no
tampering of display contents), yellow (display possibly tampered with), or red
(non-certified app executing).

Listing 1.1 shows the core logic for managing the contents of the bar, based
on the code that they have publicly released for their system. This core logic
executes once per second and determines the color of the lock icon and the
identity of the app the user is interacting with. The logic works as follows: (a)
if the top activity is owned by SYSTEM, it displays a green lock and an indicator

[Green] Locked,
System Apps

[Green] Locked,
Verified App

[Yellow] Unlocked,
Unverified Content Present

[Red] Unlocked,
Verification Failure

Fig. 3. WhatTheApp visualization for various screen states. The first image is for sys-
tem apps, the second for a verified app, the third is shown when a window is overlayed
on a verified app and the last visualization is when an unverified app is opened.

1 // execute every second
2 LockStatus getVerificationStatus () {
3 if (topActivity identity is SYSTEM)
4 return GREEN_LOCK_ICON
5 else
6 {
7 if(topActivity identity is not VERIFIED)
8 return RED_LOCK_ICON
9 else if(topActivity identity is VERIFIED)

10 {
11 if(current WindowStack only contains windows of topActivity and SYSTEM)
12 return GREEN_LOCK_ICON
13 else
14 return YELLOW_LOCK_ICON
15 }
16 }
17 }

Listing 1.1. Logic of UI defense proposed
in [7].

Table 1. Effect of a transient window when
the user is in a verified app.

Condition Visualization

Verified App Green Lock Icon, Verified App Identity

Malware window appears Yellow Lock Icon, Verified App Identity

Malware window hidden Green Lock Icon, Verified App Identity

displaying “ANDROID.” Thus, the user should be able to trust that the input
provided will go to a system application. (b) Otherwise, it verifies whether the
app for top-level activity is EV-certified. If not, a red lock icon is displayed (i.e.,
an unverified app is the top activity). Otherwise, the name of the app from the
EV certificate is displayed. An additional check is made to ensure that all the
windows in window stack are owned by the verified app. If not, a yellow lock is
displayed. Otherwise, a green lock is displayed. Green lock is meant to convey
to the user that the entered input will go to the app identified in the security
indicator. We found the prototype code to be consistent with the paper.

4 WhatTheApp Vulnerabilities—Timing Attacks and
Side Channels

Design choices that lead to attacks. The WhatTheApp design choice to
verify the screen contents at a particular frequency embodies the time-of-check-
time-of-use design flaw, because the screen contents can change just after a
check is complete, forcing the indicator to display stale information for the user.

Furthermore, the design choice to allow arbitrary window pre-emptions requires
the user to always be cognizant of indicator contents—prior research discusses
that users do not constantly pay attention to security indicators [15]. Ideally, a
user should only check an indicator once before commencing a security sensitive
operation.

Clickjack attacks. We found that a malware app can bypass the periodic check
in WhatTheApp by quickly rendering a rogue window on top of an app’s UI and
then hiding that window. Often, one tap on the soft keyboard is successfully
stolen. To the end user, this appears as a random fluctuation in input and the
user may not even notice the absence of a single character—missing input can be
auto-corrected or, for passwords, the user may simply retype the password on an
error. For passwords, as a result of malware stealing some characters, bruteforce
attacks become easier due to entropy reduction.

We tested all our attacks on an Android emulator running Android 4.4 with
WhatTheApp modifications, the same version as published by Bianchi et al.
To make the malware inject the rogue window only when password windows
were displayed, we used a previously known side channel on Android that is
described in [11] that allows monitoring the window transitions of other apps by
unprivileged malware.

In practice, we found the attack to be only partly effective since, at times,
the lock icon would turn yellow if the check logic of Listing 1.1 happens to
trigger while the rogue window is displayed (hand caught in the cookie jar, so
to speak). Our attack used the WindowManager.addView API to quickly create
attack windows whenever an app we wished to attack became a foreground app
and displayed the password window1. The detailed effect of showing and hiding
a malware deception window while a user is interacting with a verified app is
shown in Table 1.

Leveraging new side-channels. We discovered a new side-channel that makes
the previous attack very effective—in most cases, it was missed entirely by
WhatTheApp defenses. The side channel enables a background malware app to
discover whenever a security check occurs, enabling it to predict the approximate
time of the next check and thus precisely time the display of a phishing window
to occur during an interval prior to the next check. The end effect was that
malware could steal user’s input without causing any changes in their security
bar (the lock icon stayed green during our tests).

Our side channel exploits the publicly available information on the timing
of the binder IPC calls. Binder is the de facto Android IPC mechanism. The
security bar in WhatTheApp runs as its own process and makes a binder IPC
call to verify screen contents every second using a timer. A test malware app
monitored the timing of the binder IPC calls and inferred the ones that came
from the WhatTheApp security indicator. To the best of our knowledge, this is
the first exploitation of binder calls on Android for a side channel.

1 We chose to attack Facebook in our examples, though it could equally well have
been a banking app.

1 587398: call from 1323:1455 to 1141:0 node 585 handle 34 size 72:0
2 587399: reply from 1141:1389 to 1323:1455 node 0 handle -1 size 212:4
3 587400: async from 1323:1323 to 928:0 node 1341 handle 22 size 80:0
4 587401: call from 1323:1323 to 928:0 node 2428 handle 38 size 100:0

Listing 1.2. Sample binder transaction logs. Each line corresponds to a single transac-
tion. Each line is of the form (debug id), (txn type), (source Pid/Tid), (dest. Pid/Tid),
(bookkeeping data). The first 2 lines contain relevant transaction logs from the security
bar to the security check service.

In particular, binder IPC calls are referred to as binder transactions. In a
single call-return IPC, there is one transaction for the outgoing call and one
transaction for the incoming reply. The binder kernel driver publishes debugging
statistics to /sys/kernel/debug/binder. There are several publicly accessible
logging files under this directory. These files are present on factory images of real
devices. Of particular interest is the transaction log2 file that lists a history of
transactions occurring between processes on the system. Sample transaction logs
are shown in Listing 1.2. For every transaction, there is a line containing a debug
identifier, transaction type (call, reply, async), source process and thread id, des-
tination process and thread id, and other bookkeeping information. Therefore,
our test malware app can determine that a transaction occurred between two
processes, but it does not know the name of the called remote method. The sys-
tem server on Android hosts multiple important services, including the window
manager. Any process hosting UI makes several calls a second to the window
manager portion of the system server. Thus the attack app has to disambiguate
and locate the security check call by WhatTheApp from other events in the log.

To do that, our test malware measured the sizes of the transaction data
and discovered that the call-reply transaction pair corresponding to the security
check had unique values for the sizes at approximately one second intervals. This
allowed the test malware to determine the transactions of the security indica-
tor (nav bar) display process and the security check service. The test malware
then measured the time intervals between transactions for these two processes
by sampling the log file at an interval of 50 ms. We determined that the inter-
val between consecutive events was approximately 1 sec +/- 600 ms. In some
cases, the error was upto 3 seconds. This error is due to scheduling policies,
context switches, and memory pressure. Thus, the side channel we discovered
was relatively noisy.

Experimentally, we found that the malware could overcome the noise in the
side channel by only performing attacks when the channel indicated relatively
stable time intervals between the checks (Listing 1.3). Our test malware com-
puted the time interval between the previously observed security check and the
latest observed security check. Ideally, we expect this delta to be close to 1 sec-

2 At the time of writing, this file was publicly accessible to any app. Recently, the
current version of Android (Marshmallow) tightened its SELinux policy to prevent
arbitrary apps from accessing the file.

1 void sideChannelAttack () {
2 while(shouldAttack ()) {
3 TempTxnLog = getTxnLog ("/sys/kernel/debug/binder/transaction_log ")
4 (srcPid , destPid) = getPids (" EVBar", "VerifierService ")
5 TxnLog = filterLogs(srcPid , destPid)
6 if(TxnLog contains new transaction from srcPid to destPid)
7 {
8 delta = NOW - prev_txn_timestamp
9 if(delta >= 800 AND delta <= 1200)

10 show_attack_window (400)
11

12 prev_txn_timestamp = NOW
13 }
14

15 sleep (50)
16 }
17 }
18

19 boolean shouldAttack () {
20 TopOfStackActivity = readTopOfStack ()
21 if(TopOfStackActivity == "com.facebook ")
22 return true
23 else
24 return false
25 }

Listing 1.3. Control algorithm exploiting
Binder side channel.

Table 2. Effect of using a side channel to pre-
dict attack times. Tests were run for 6 hours.

Condition Successful Attacks/Total Attacks %Success

No side channel (random) 5475/11199 48.8%

Side Channel 9923/10783 92%

ond (based on public code for WhatTheApp). If the delta value was between
800ms and 1200ms, then the malware assumed that side channel information
was relatively stable and it launched an attack window; otherwise, it waited for
the next stable interval. Thus, this algorithm is conservative and does not utilize
all possible intervals, only those that it deemed stable for attack. Experimentally,
we found this algorithm to be effective, as detailed below.
Quantifying the efficacy of the side channel. We conducted an experiment
to quantify how much the side channel helps improve the stealthiness of the click-
jack attack. On an Android device running WhatTheApp defenses, we deployed
a Facebook App and a background malware app (unprivileged). We launched
Facebook automatically and brought it to the login screen for 20 seconds, then
exited Facebook, slept a random amount of time (3 to 5 seconds) and repeated
the process (this was done automatically). The background app launched its at-
tack when Facebook’s login screen was up. It then overlayed an attack window
fashioned like a keyboard for 400ms ten times during the 20sec interval. The aim
was to realistically simulate user login and a malware’s attempt to capture parts
of the password during the login without getting detected by WhatTheApp’s de-
fenses, which were executing all the time. This process was repeated for 6 hours
to give us substantial amount of data for statistically valid results.

We compared two attack strategies (Table 2): (1) with no side channel infor-
mation on the security checks; and (2) with exploiting the new side channel to
predict the time till the next security check. The first strategy waited for Face-
book to start and then began an attack sequence where a clickjacking window
is shown for 400ms followed by a pause of 600ms where no window a shown,

ten times with each 20-sec duration when the Facebook’s login window was up.
Since the security check of WhatTheApp is 1 second apart, our random strategy
aimed to randomly synchronize with the security checks so that it could elude
the check for 10 consecutive clickjack events per login window display. We found
that out of a total of 11199 attack events, 5724 attack events were caught and
marked as yellow. This was generally consistent with our intuition in that if the
first clickjacking event evaded the check (60% odds, since the attack window was
400ms in each second), others were likely to evade as well in that attack window.

The side-channel strategy used the binder transaction statistics as an ad-
ditional signal to help time the 400ms long attacks. The process was same as
the above in other respects, except that the 400ms attack was only launched
when dictated by the side channel. We again ran the experiment over 6 hours
with Facebook configured identically. There were a total of 10783 attacks out of
which, only 860 were caught (i.e., security indicator’s lock turned yellow)3.

In summary, the random strategy, without side channel information, was
found to be successful approximately 48.8% of the time compared to 92% of
the time for the strategy using the binder log side-channel. Statistically, this is
a significant increase in stealthiness. Our attack demonstrations are available
here [13]4.
Overlay attacks on a system window. Based on the code of the WhatTheApp
prototype (Listing 1.1, lines 3-4), we noticed that if the top activity was SYSTEM,
the green lock icon stays on all the time. This was the case even if a malware
window was layered on top of the system window. This enabled our test malware
to freely display attack windows over sensitive system apps such as the default
EMail client and WiFi password boxes and capture the input. We also tried this
attack using random show/hide durations and the lock icon visualization always
remained green. We believe this attack is possible due to an implementation flaw
in WhatTheApp—the defense does not inspect the identities of all windows on
the stack when the foreground window is of type SYSTEM.

5 Proposed Design

Addressing the problem we illustrated with the WhatTheApp UI defense turns
out to be tricky with some tradeoffs. We thus describe two solutions to the prob-
lem, with the first solution a variant of Bianchi’s solution to make it harder to
evade check logic and the second solution introducing an additional mechanism
to render window overlay attempts by background apps harmless. The second

3 There are slightly fewer attacks than the random strategy since the channel strategy
is conservative and chooses to let some intervals go without attack attempts rather
than to risk detection.

4 Our attack demonstrations in the video use a window type that captures input
without passing the input to the underlying window. We subsequently verified that
our attacks are feasible using toast windows, that allow input to be both captured
and passed to the underlying window; in this case the user will not notice missing
characters.

solution is more robust from a security perspective, and thus more appropri-
ate for high-assurance environments, but it also limits some aspects of the way
Android apps are allowed to interact with users.

Before we describe the two designs, we note that this paper is not about the
design of security indicators. We assume that both designs that we are presenting
use security indicators in the style of WhatTheApp since end-users found them
to be effective according to a systematic user study conducted by Bianchi et
al. Instead, the goal of this paper is to provide systematic defenses against the
newly discovered vulnerabilities that are discussed in Sections 3 and 4.

5.1 Design 1: Improving attack detection with existing UI defenses

An obvious first step towards defense is to plug the newly discovered side chan-
nel by preventing access to information in /sys/kernel/debug/binder to apps.
However, other side channels cannot be ruled out. There are other shared re-
sources (e.g., lock on the window manager) that could potentially leak timing
data. A more robust strategy could be to randomize the security check time in-
tervals in WhatTheApp. Unfortunately, even that would not rule out successful
attacks. Some characters could still be stolen via clickjacking as intervals where
no checks take place would still exist.

Furthermore, transient windows like Toasts or Chat heads or Now-on-Tap-
style widgets occur in Android normally. Those would turn the lock yellow,
perhaps desensitizing a user to occasional occurrences of a yellow lock.

WhatTheApp has a potential implementation error where SYSTEM-owned win-
dows can be pre-empted without a change in indicator visualization because the
code assumes the system is safe if the top level activity is system-owned. A sim-
ple fix is to use the same logic for system windows that is used for other apps,
namely, checking that all activites in the stack are from the SYSTEM when the
top-level activity is SYSTEM. We confirmed that this fix helps, however, clickjack
attacks remain feasible.

Thus, overall, interceptions of user input by malware via clickjacking becomes
harder, but remains feasible, despite the additional defenses. The fundamental
problem is that short-duration clickjacking attacks can go undetected if they fall
between security checks.

5.2 Design 2: Secure Entry Mode using an Overlay Mutex

Design 2 blocks clickjacking attacks while the soft keyboard is being used. In
the current proof-of-concept prototype, we focused on deploying the defenses of
design 2 whenever the soft keyboard is used since that is a typical method for
entering passwords and sensitive input, leaving generalizations to other inputs as
future work. Note that our overlay mutex algorithms, however, are independent
of the specific mechanism used for activation. As in WhatTheApp, design 2
requires the user to verify the green lock and app name in the security bar once,
after a soft keyboard comes up, but before entering any sensitive text input (e.g.,
a password). Unlike WhatTheApp, Design 2 guarantees that any keyboard input

entered goes to the identified app only, even if background malware attempts
to perform clickjack attacks to intercept input secretly by exploiting the binder
side channel.

Overlay Mutex. To provide the guarantee, design 2 uses a novel security mech-
anism that we term overlay mutex designed as an addition to Android’s UI stack.
Overlay mutex utilizes an inter-process synchronization lock, as opposed to the
visual green/yellow lock in Bianchi et al. The overlay mutex is acquired and
released on behalf the foreground app, whenever the soft keyboard is shown and
hidden respectively. It provides the following invariant during the period that
an overlay mutex is held:

A background non-system app cannot overlay a window on top
of the foreground app’s window(s). Instead, an attempt to do so is
converted to a safe user notification.

On Android, the invariant has a significant implication with respect to the
ability of a background app to surreptitiously become the foreground app and
hijack input (see the Activity Hijacking attack discussion in Section 2). The net
result of the above is that a background app cannot tamper with the screen
in arbitrary ways, cannot become the foreground app unless the user explicitly
chooses to switch, and it cannot therefore intercept the input intended for the
foreground app. We elaborate on that below.

Background apps have three options to pre-empt foreground apps. Toasts are
customizable transient windows and Activities are full screen windows that can
be created by malicious apps. Also, arbitrary sized windows can be created and
added to the window hierarchy by directly invoking WindowManager.addView.

The overlay mutex mechanism prevents all pre-emption attack vectors. When
the overlay mutex is active, a background app’s request to display a window
is blocked. The active overlay mutex converts the pre-emption window into a
system-generated, fixed-size textual notification with the interrupting app’s iden-
tity. Our system displays the notification on the Android status bar at the top
of the screen. Since malware has no control over the size and placement of these
notifications, the ability of the background app to involuntarily cause a switch
or overlay a window in unexpected ways is taken away. Furthermore, the precise
timing of the switch is no longer under the control of the attacker. Upon seeing a
notification, users can voluntarily resume the pre-empting window by tapping on
the notification, after they have inspected the identity information—interrupts
are not lost, merely delayed. We do not think this is particularly limiting for
practical use in high assurance apps since other cues exist. Audio and haptic
alerts can serve to draw the user’s attention to the notification.

Overlay Mutex Algorithm. We discuss the logic of the Overlay Mutex in
the case of the Android operating system. The Overlay Mutex is two functions
in the ActivityManager—EnterSecureMode and ExitSecureMode. Whenever
policy dictates that secure input should be available (such as when a key-
board is displayed), the EnterSecureMode function executes (Listing 1.6). First,
EnterSecureMode attempts to gain a synchronization lock maintained centrally
by the activity management service. The second step is to verify the identity of

the foreground app and update the visualization of the security indicator ap-
propriately. The third step is to store a state variable CurrentVerifApp that
is used for checks during pre-emption attempts and finally release the activity
manager lock. ExitSecureMode simply resets the value of CurrentVerifApp.

If secure mode is disabled (CurrentVerifApp is null), windows can show up
at any point in time and the security indicator updates itself once a second to
reflect the current state of the display—no change from WhatTheApp.

Consider the case where secure mode is enabled (CurrentVerifApp is set to
an app’s package name) and a background process tries to display an activity,
pre-empting the user’s current secure mode. If the background process is the
system, as a matter of policy, we let this pre-emption attempt succeed and up-
date our CurrentVerifApp state variable appropriately. The security indicator
updates itself in the usual way.

However, if the background service does not have the same package name
as the current verified app, then we hold that pre-emption attempt and instead
show a safe notification to the user (Lines 9-10, Listing 1.4). This provides the
Overlay Mutex security guarantee that windows of unrelated provenance will
not appear on the display.

Listing 1.4. StartActivity
1 void ActivityMgr.startActivity () {
2 ActivityMgr.lock()
3 if(CurrentVerifApp == NULL or
4 callerUID == SYSTEM or
5 callerUID == CurrentVerifApp.UID) {
6 newAct = showActivity ()
7 updateTopStackActivity(newAct)
8 } else {
9 ConvertActivityToNotification ()

10 ShowSafeNotification ()
11 }
12 ActivityMgr.unlock ()
13 }

Listing 1.5. Adding a window to the dis-
play

1 status_code WindowMgr.AddView () {
2 retval = ERROR
3 ActivityMgr.lock() //IPC
4 if(CurrentVerifApp == NULL or
5 callerUID == SYSTEM or
6 callerUID == CurrentVerifApp.UID) {
7 showWindow ()
8 retval = SUCCESS
9 }

10 ActivityMgr.unlock () //IPC
11 return retval
12 }

Listing 1.6. Entering and exiting secure
mode

1 void ActivityMgr.lock() {
2 lock(ActivityLock)
3 }
4

5 void ActivityMgr.unlock () {
6 unlock(ActivityLock)
7 }
8

9 void ActivityMgr.EnterSecureMode () {
10 ActivityMgr.lock()
11 CurrentVerifApp = getTopActivityId(’EV ’)
12 updateSecurityBar(CurrentVerifApp)
13 ActivityMgr.unlock ()
14 }
15

16 void ActivityMgr.ExitSecureMode () {
17 ActivityMgr.lock()
18 CurrentVerifApp = NULL
19 ActivityMgr.unlock ()
20 }

Implementation Details. We prototyped the Overlay Mutex algorithms
on top of the released source code of WhatTheApp. We modified the
ActivityManagerService to create a synchronization lock and modified func-
tions related to creating windows on the screen—startActivity, Toast.show,
and addView. A noteworthy point with addView is that it directly adds windows

to the screen without an associated activity. If an addView call fails with error
(like in Listing 1.5), Android will not try again. We modified the Android in-
process helper library to retry adding a window upon receipt of an error from
the WindowManager. This ensures that addView will succeed at a later point once
the user exits secure mode.

6 Defense Evaluation

We analyzed existing UI attacks found in the wild. These attacks are repre-
sentative of the general set of techniques attackers use to launch UI attacks
and cover all classes discussed in Section 2. We tested and compared Design
2 with WhatTheApp against these attacks. Design 1 has similar limitations as
WhatTheApp, since it does not eliminate clickjacking attacks; it only makes
them less likely. We summarize the findings in Table 3 and discuss below.

Direct Phishing. Neither defense can prevent direct phishing where the top
activity itself engages in phishing. However, both will provide a security indicator
to alert users to the EV-certified identity of the app (if available) or indicate a
red lock. The behavior of the two solutions is identical. The user is expected
to verify the identity of the app and the lock status before entering input. We
tested this with the following attack on the Google Wallet SDK (AliPay SDK).
Alipay allows apps to fire an unrestricted intent to the Play Store to request
its use. Unfortunately, any app can intercept this intent with a high priority
receiver and instead become the foreground activity, as opposed to the Google
PlayStore, and solicit sensitive banking information. This is similar to Felt’s
intent hijacking example of direct phishing [8]. For defense, the users will need
to verify the security indicator in the security bar and realize that the activity
soliciting the information is not Google Play Store.

Activity Hijacking. The behavior of the Overlay Mutex with this attack de-
pends on the policy in use. In the most popular keyboard policy that we dis-
cussed, if the hijacking is attempted while the user is performing input, then
the hijacking attempt is converted to a safe notification. We verified this with
Trojan-Banker.AndroidOS.Svpeng.A [21]. However, if the hijacking attempt oc-
curs during a time where the user does not have the keyboard up then, just
like WhatTheApp, the security indicator turns yellow and the attack becomes
user-detectable provided the user checks the indicator before a subsequent input
attempt. At this point, the user must not enter any input and should try again,
as is the case with WhatTheApp.

Clickjacking. Whenever the user is performing input using the soft keyboard,
the overlay mutex is active and catches pre-emption attempts converting them to
safe notifications thus preventing clickjacking. In contrast, WhatTheApp allows
the pre-emption and updates the security bar visualization to a yellow unlocked
icon. Since the transition of the attack window is very fast, chances are high
that a user misses the change in the security indicator. Therefore, we mark
WhatTheApp in Table 3 as unreliably detected. In the case of the clickjacking

Table 3. Summary of findings from UI deception attacks tested on Android v4.4 using
our Overlay Mutex and WhatTheApp.

Malware behavior Overlay Mutex Bianchi et al. (verified on prototype)

Direct phishing of another app’s data User-detectable User-detectable

Activity hijacking(e.g., Trojan-Banker.AndroidOS.Svpeng.A) User-detectable User-detectable

Clickjacking without side channel Prevented Unreliably detected

Clickjacking with side channel info Prevented Not detected or only rarely detected

Malware overlaying active System app while user performing input Prevented Not detected

attack using our newly discovered side channel, as shown earlier (Section 4), the
security indicator does not change to yellow 92% of the time.
Malware overlaying system app during user input. In a similar vein, if an
overlay mutex is active during user input into a system app, the pre-emption is
converted to a safe notification. However, WhatTheApp does not recognize any
overlays on top of system apps and the security indicator is green. Therefore,
WhatTheApp does not detect such attacks. A fix that we made to WhatTheApp
in this special case is to check the window stack just like it does for non-system
apps. If this attack were applied to the patched-WhatTheApp, then the security
indicator would display yellow and the attack will be user-detectable.
Microbenchmark Performance. Our overlay mutex solution changes window
creation to make two IPC calls and one lock/unlock sequence. We quantified the
overhead of these extra operations to determine the impact on interactivity using
a UI bench that created and removed a 200x200 pixel window, 300 times. We ran
our benchmark on a Nexus 4 running stock Android 4.4 and Android 4.4 with the
overlay mutex’s secure mode active. We observed that, on average, it took 17.7
microsec for a window to display on stock Android compared to 35.3 microsec
on Android with our defense—a modest increase in window display time. For
comparison, launching an Android activity takes several hundred milliseconds.
App Compatibility. We manually tested popular apps by exercising common
functionality associated with each app on our overlay mutex prototype, and ob-
served whether any functionality failed. We used the following set and did not
observe any issues: standard (Messaging, Browser, Email, Search, Contacts), so-
cial networking (Facebook, Twitter), communication and business (Skype, Tax-
ACT), banking (Chase, Bank of America), and top 2 free games (Angry Birds,
Trivia Crack). For instance, we brought up the keyboard in Facebook (thereby
gaining the Overlay Mutex), and initiated a Skype call from another device. The
overlay mutex caught the Skype-initiated pre-emption for an incoming call, and
later, when we clicked on the notification, the incoming call window pre-empted
Facebook. The caller side experienced a delayed call answer.

7 Discussion

The attacks in this paper concerned stealing key input, such as passwords, credit
card numbers, etc. However, clickjacking has a broader meaning—an attacker
could display malicious windows strategically placed over UI elements to confuse
the user. For example, a window placed over a permission listing screen can serve

misinformation to the user about the permissions a particular app requests, or
windows placed over “OK” and “Cancel” buttons can reverse their meaning.
Such attacks are possible in limited situations on WhatTheApp. In the case of
overlaying a system window, such attacks will go unnoticed. In the general case of
overlaying any window, a flickering effect will occur since the attacker has to add
and remove the attack window so that the security check does not turn yellow.
In the case of our overlay mutex, such attacks will be blocked, and converted to
notifications.

The iOS platform too has been a victim of recent UI deception attacks [34,6].
These attacks exploit the lack of UI provenance. For instance, the common
iCloud popup password boxes are indistinguishable from fake ones. The recent
Android Marshmallow update does not offer any UI provenance or overlay mutex
mechanisms—UI deception attacks are still possible.

A limitation of our work is the lack of a usability study to assess effectiveness
of the defenses in practice and to determine whether users require training to
make effective use of the defenses. Another limitation is that the overlay mutex
mechanism could cause side-effects on functionality of existing apps or certain
use cases. While we did test a small set of apps manually, as future work, we
plan systematic testing of the mechanism with a larger set of apps [19].

8 Related Work

UI deception, or phishing, has a long history of attacks and defenses, initially
occurring in the context of browsers [15,26,14,32,31]. The fundamental issue that
attackers exploit is lack of provenance. Even when provenance exists, practice has
shown that users’ lack of understanding of security indicators, visually similar
UIs, and lack of user attention conspire to make phishing attacks very success-
ful [15]. UI deception attacks also use other attack vectors as enhancements, e.g.,
phishing emails are a common way to get users to visit phishing pages [18].

A large body of previous work has focused on various forms of UI attacks
on smartphone operating systems. Niemietz et al. introduced UI redressing at-
tacks [25], Felt et al. discuss phishing on mobile devices [16] and Chen et al. [11]
introduce a memory-statistics side channel that is used to enhance classic activ-
ity hijacking attacks [3], [4], [12]. svpeng demonstrates that UI deception occurs
in the wild and uses the activity hijacking technique [21]. All these serve to
motivate the necessity for a technical solution to UI deception.

Tong and Evans introduced GuarDroid, a trusted path for password entry
that uses a trusted keyboard to encrypt sensitive information before deliver-
ing to apps and then automatically decrypts the data upon network commu-
nication [28]. However, endpoints of this system are still vulnerable to overlay
attacks. Therefore, Bianchi et al. propose a two-layered defense comprising a
market-level static analysis tool to catch particularly malicious patterns of UI
deception. This tool is augmented with a runtime defense modeled after the
well-known HTTPS lock icon and EV infrastructure [7]. We regard this work
as the state-of-the-art and presented its detailed analysis in Section 3, along

with a clickjacking vulnerability and a newly discovered side channel that makes
clickjacking very effective.

Recently, Android 5.0 introduced the screen-pinning feature that locks the
user into a single app and prevents navigation away from that app unless the
owner explicitly exits screen-pinning using an unlock code [27]. However, screen-
pinning is fundamentally different from overlay mutexes as they are not intended
as a UI deception defense mechanism. We verified that direct phishing attacks
and clickjacking attacks are possible on screen-pinned apps.

Huang et al. proposed InContext, a suite of defenses targetting visual and
temporal integrity of browser UI elements [20]. Their solution requires intro-
ducing a delay of 250ms or higher between the time the user issues an input
command and the time the command is delivered to the browser UI element.
Besides the potential impact on interactivity, subsequent work has demonstrated
that defenses relying on time delays are still vulnerable to clickjacking [5]. Our
work does not rely on delays and instead locks out window transitions while the
user is performing secure input, converting attempted overlays to notifications.

9 Conclusion

Android is vulnerable to a wide range of UI attacks. The standard solution
to handling UI attacks is to use security indicators to assist users in identify-
ing the attacks and recent solutions have proposed security indicators inspired
by HTTPS lock icons for Android [7]. We studied the security properties of
a recent system by Bianchi et al. and determined that it remains vulnerable
to side-channel-enhanced clickjacking attacks. Our work introduced the Binder
statistics channel and demonstrated how to leverage it to elude security checks.
We proposed the overlay mutex mechanism that guarantees temporal integrity
of security indicators by converting window pre-emption attempts to safe noti-
fications. We evaluated our defense against known UI deception as well as the
new side channel attack introduced in this paper and found that the defense is
effective against these attacks.
Acknowledgements. We thank the reviewers for their insightful feedback. This
material is based upon work supported by the National Science Foundation under
Grant No. 1318722. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

1. Android UI Deception PoC Code. https://github.com/earlence/
AndroidUIDeceptionRevisitedFC16, Accessed: Oct 2015

2. Apple XCodeGhost Attack. http://www.apple.com/cn/xcodeghost/#english, Ac-
cessed: Oct 2015

3. Activity hijacking pattern for Android. http://capec.mitre.org/data/definitions/501.
html, Accessed: Oct 2015

4. Android Touch-Event Hijacking. https://blog.lookout.com/blog/2010/12/09/
android-touch-event-hijacking/, Accessed: Oct 2015

5. Akhawe, D., He, W., Li, Z., Moazzezi, R., Song, D.: Clickjacking revisited: A
perceptual view of ui security. In: Proceedings of the 8th USENIX Conference on
Offensive Technologies. pp. 1–1. WOOT’14, USENIX Association, Berkeley, CA,
USA (2014), http://dl.acm.org/citation.cfm?id=2671293.2671294

6. Ben Lovejoy: Beware authentication popups in iOS Mail: bug allows
convincing-looking phishing attacks. http://9to5mac.com/2015/06/10/ios-mail-
phishing-popup/, Accessed: Dec 2015

7. Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the App is That? Deception and Countermeasures in the Android User
Interface. In: Proceedings of the IEEE Symposium on Security and Privacy (SP).
San Jose, CA (May 2015)

8. Castillo, C.: McAfee Labs. Phishing Attack replaces Banking app with mal-
ware. Published June 2013. http://blogs.mcafee.com/mcafee-labs/phishing-attack-
replaces-android-banking-apps-with-malware, Accessed: Oct 2015

9. Chebyshev, V., Unuchek, R.: Mobile malware evolution in 2013. http://securelist.
com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/,
Accessed: Oct 2015

10. Chen, J., Chen, H., Bauman, E., Lin, Z., Zang, B., Guan, H.: You shouldn’t col-
lect my secrets: Thwarting sensitive keystroke leakage in mobile ime apps. In:
24th USENIX Security Symposium (USENIX Security 15). pp. 657–690. USENIX
Association, Washington, D.C. (Aug 2015), https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/chen-jin

11. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into Your App without Actually Seeing
It: UI State Inference and Novel Android Attacks. In: Proceedings of the 23rd
USENIX Security Symposium (2014)

12. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing Inter-application Com-
munication in Android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services. pp. 239–252. MobiSys ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/1999995.2000018

13. Clickjacking SideChannel Demonstration videos. https://sites.google.com/site/
clickjackingsidechannels/, Accessed: Oct 2015

14. Dhamija, R., Tygar, J.D.: The Battle Against Phishing: Dynamic Security Skins.
In: Proceedings of the 2005 Symposium on Usable Privacy and Security. pp. 77–
88. SOUPS ’05, ACM, New York, NY, USA (2005), http://doi.acm.org/10.1145/
1073001.1073009

15. Dhamija, R., Tygar, J.D., Hearst, M.: Why Phishing Works. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. pp. 581–590.
CHI ’06, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/1124772.
1124861

16. Felt, A.P., Wagner, D.: Phishing on Mobile Devices. In: In W2SP (2011)

17. Fernandes, E., Chen, Q., Essl, G., Halderman, J.A., Mao, Z.M., Prakash, A.:
TIVOs: Trusted Visual I/O Paths for Android. Tech. Rep. Technical Report CSE-
TR-586-14, CSE Department, University of Michigan, Ann Arbor (2014)

18. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Pro-
ceedings of the 16th International Conference on World Wide Web. pp. 649–
656. WWW ’07, ACM, New York, NY, USA (2007), http://doi.acm.org/10.1145/
1242572.1242660

19. Hao, S., Liu, B., Nath, S., Halfond, W.G., Govindan, R.: Puma: Programmable
ui-automation for large-scale dynamic analysis of mobile apps. In: Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications,
and Services. pp. 204–217. MobiSys ’14, ACM, New York, NY, USA (2014), http:
//doi.acm.org/10.1145/2594368.2594390

20. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:
Attacks and defenses. In: Proceedings of the 21st USENIX Conference on Secu-
rity Symposium. pp. 22–22. Security’12, USENIX Association, Berkeley, CA, USA
(2012), http://dl.acm.org/citation.cfm?id=2362793.2362815

21. Kaspersky: Svpeng android malware targets banking apps. http://www.
kaspersky.com/about/news/virus/2014/Kaspersky-Lab-detects-mobile-Trojan-
Svpeng-Financial-malware-with-ransomware-capabilities-now-targeting-US-users,
Accessed: Oct 2015

22. Kelly, M.: Badlepricon: Bitcoin gets the mobile malware treatment in Google
Play. https://blog.lookout.com/blog/2014/04/24/badlepricon-bitcoin/, Accessed:
Oct 2015

23. Liu, B., Nath, S., Govindan, R., Liu, J.: DECAF: Detecting and Characterizing
Ad Fraud in Mobile Apps (2014)

24. Liu, D., Cuervo, E., Pistol, V., Scudellari, R., Cox, L.P.: ScreenPass: Secure Pass-
word Entry on Touchscreen Devices. In: Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services. pp. 291–304. Mo-
biSys ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2462456.
2465425

25. Niemietz, M., Schwenk, J.: UI Redressing Attacks on Android Devices. In: Pro-
ceedings of BlackHat Abu Dhabi.) (2012)

26. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The Emperor’s New Security
Indicators. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy.
pp. 51–65. SP ’07, IEEE Computer Society, Washington, DC, USA (2007), http:
//dx.doi.org/10.1109/SP.2007.35

27. Android 5.0 Screen Pinning. https://support.google.com/nexus/answer/6118421?
hl=en, Accessed: Oct 2015

28. Tong, T., Evans, D.: GuarDroid: A Trusted Path for Password Entry. In: Proceed-
ings of Mobile Security Technologies (MoST) (2013)

29. TrendMicro: Mobile phishing attacks ask for government ids. http:
//blog.trendmicro.com/trendlabs-security-intelligence/mobile-phishing-attack-
asks-for-users-government-ids/, Accessed: Oct 2015

30. Unuchek, R.: Svpeng android malware targets google play with fake credit
card window. http://securelist.com/blog/incidents/63746/latest-version-of-svpeng-
targets-users-in-us/, Accessed: Oct 2015

31. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: NDSS (2010)

32. Wu, M., Miller, R.C., Garfinkel, S.L.: Do Security Toolbars Actually Prevent Phish-
ing Attacks? In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 601–610. CHI ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1124772.1124863

33. Zhang, Y., Xue, H., Wei, T.: Occupy your icons silently on android. http://www.
fireeye.com/blog/technical/2014/04/occupy your icons silently on android.html, Ac-
cessed: Oct 2015

34. Zhaofeng Chen, Tao Wei, Hui Xue, Yulong Zhang: Three New Masque Attacks
against iOS: Demolishing, Breaking and Hijacking. https://www.fireeye.com/blog/
threat-research/2015/06/three new masqueatt.html, Accessed: Dec 2015

