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Abstract—Three hundred and fifty thousand Android phones
are activated each day. The open philosophy adopted by Google
makes it easy for third-parties to develop and distribute applica-
tions. Unfortunately, the same applies to malicious applications
that pose a real threat to users’ privacy. The limited security
model implemented on the Android Platform has failed in thwart-
ing these attacks. In this paper, we present Yet Another Android
Security Extension (YAASE) that provides a fine-grained security
mechanism while protecting the user from malicious applications
that attempt to leak sensitive information via network access or
by privilege spreading through collusion. We have implemented
YAASE and evaluated its performance overhead. Preliminary
results show the approach is indeed feasible.

I. INTRODUCTION

Android shook the world of smartphones. It created an
ecosystem full of developers eager to embrace and make use
of the opportunities offered by smartphones. Thanks to the
open model supported by Google, developers are not forced
to pay high code certification fees or sharing a significant
percentage of their profit with application distribution points
(ak.a. “markets”). The fast growth of Android smartphone
operating systems’s market shares is the tangible proof a
real demand was met [4]. Not surprisingly, also the number
of applications developed for Android is knowing a similar
growth rate [3].

Unleashing the smartphone application market was ben-
eficial also for end-users who can now choose among a
huge variety of applications. While most of these applications
achieve their goals without abusing users’ privacy, some of
them have recently hit the media for being quite effective in
doing the opposite [5], [1]. Furthermore, an open and popular
platform as Android, provides a perfect environment to exploit
and disseminate security attacks.

To prevent such undesirable situations, Android incorporates
security mechanisms and features that allow partial protec-
tion of user’s privacy from malicious applications. However,
developing an efficient and usable security model suitable
for battery powered devices which is intended for use by a
wide range of people is not an easy challenge. In fact, while
addressing many security issues, the Android security model
has also several shortcomings [15].

Some of these have been already addressed by the many
Android security extensions already proposed in the literature.
Some [13], [14], [9], [18] extended run-time security features,
others [6] extended the class of supported security policies.
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Even the problem of information flow was covered by one of
the earliest extensions [13].

Up to date, all proposed extensions fall short in covering
limitations related to the ability of applications, especially
colluding ones, to breach user’s privacy. Those addressing
privacy are still unsatisfactory as discussed in the next section.
This paper proposes Yet Another Android Security Extension to
fill this gap providing in a single solution all the mechanisms
users need to protect their privacy as they wish.

A. Motivations

Despite some initial attempts to address the privacy issue,
the solution proposed by MockDroid[7], TISSA [23], and
AppFence [16] are too coarse-grained. These approaches apply
indiscriminate modifications to the whole data of a content
provider. For instance in TISSA, if a user selects to apply
anonymisation when an application reads her contact provider,
the change will be applied to the whole set of her contacts.
Another issue is related to the control of information leak-
age over network accesses. For instance, in AppFence it is
possible to block the internet connection of an application to
avoid exfiltration of data. This blocking mechanism is applied
whenever the application sends sensitive data over the internet.
Such a mechanism can be too restrictive since it would be
more desirable to control where the application is sending
the sensitive data and to block only the communications to
illegitimate destinations.

Android security model mostly relies on application sand-
boxing. However, it has been reported that this model is
vulnerable to privilege spreading attacks [13]. In this type of
attacks, an unprivileged application exploits the permissions
of privileged applications. If the malicious application is
leveraging a vulnerability of a legitimate application then
this type of attacks is often referred to as confused deputy
attacks [12]. However, given that developing applications for
the Android Market is quite simple (just pay a $25 fee),
designing colluding applications that on purpose provide to
other applications permissions without the user being aware
of it is becoming increasingly popular [8], [21], [17], [11].

B. Contribution

The main contribution of this paper is to provide in
a coherent framework a solution for all the above issues.
In particular, our approach named YAASE (Yet Another
Android Security Extension) provides a very fine-grained
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policy enforcement mechanism where policies define several
levels of control granularity over accesses to phone resources.
YAASE leverages user-defined labels associated with data
and enforces the correct dissemination of the tagged data
for both application-to-application and application-to-internet
communications. In YAASE, data tagging and tracking is
performed by means of the TaintDroid tainting capability.
However, we have extended TaintDroid for supporting user
defined labels and for performing label modifications due to
the enforcement of filtering policies on tagged data. YAASE
policies define the data labels that an application is authorised
to handle as defined by the user. If an application tries to
access data tagged with a label for which no policy grants the
access, then the application will not be permitted to access the
data. The data tracking functionality in YAASE is completely
transparent to the applications. Any application developed
for standard Android is able to execute when YAASE is
installed. This means that the data tracking functionality does
not require the collaboration of applications (as in contrast
with QUIRE [12]). Therefore, YAASE is able to protect the
user from privilege spreading attacks even in the presence
of colluding applications (hence also from the more specific
confused deputy attacks). Finally, we have implemented our
framework and have performed preliminary evaluations.

The rest of this paper is organised as follows. In Section
II, we review existing approaches that aim at extending the
security mechanism of the Android platform. In Section III,
we provide an overview of the Android security model.
Section IV discusses the architecture of YAASE in details.
We describe here the modules introduced by YAASE and
the extensions made to the Android standard components.
Section V presents our policy language and provides some
examples of policies written for two real application scenarios.
We have implemented YAASE and performed preliminary
evaluations. In particular, we have compared the overhead
introduced by YAASE with the standard Android. Our findings
are reported in Section VI. Finally, Section VII concludes this
paper providing some final remarks and highlighting our future
research directions.

II. RELATED WORK

In Android, permissions can be requested and granted
only at installation time. To remove this limitation, several
approaches have been proposed to address the problem of
specifying and changing fine-grained policies during runtime.
Saint [19] is an install and run-time application management
system for Android aiming at protecting also applications from
each other. The authors built Saint to allow Android to be able
to enforce application policies that allow an application A to
define which application can access its interfaces, how other
application use these interfaces, and to select at run time if
using interfaces of other applications.

Nauman et al. [18] and Conti et al. [10] propose security
extensions to support context-related policy enforcement at
run-time. Bai et al. [6] has further extended the Android
security model to support part of the UCON model. All these
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papers address some security limitations but none of them
address the problems presented in this paper.

More recent papers [7], [23] concentrate on the protection of
the user’s private data. [7] introduces a system which can limit
the access of the installed applications to the data (SMS, con-
tacts, calendar, location and device ID) and the components of
the Android OS (access to the Internet and broadcast intents).
Applications are agnostic of these limitations. For instance,
an application querying the contacts’ provider may receive
no results even if the provider is not empty. This approach is
widened by Zhou et al [23]. Their work provides users with the
ability to define the accuracy level of the information revealed
to the application. They introduce four levels of privacy:
trusted, empty, anonymised or bogus. For each native content
provider users can set the privacy policy. Trusted means that
for the function the real information can be provided. Empty
means that an empty record is returned. Anonymised means
that the information is somehow anonymised before sending it
to the application. Bogus means that fake information is forged
for the application. The paper does not solve the problem
of privilege spreading and unauthorised leakage of private
information to an arbitrary internet address.

TaintDroid [13] proposes dynamic taint analysis to prevent
runtime attacks and data leakage. TaintDroid is capable of
tracking sources of sensitive data. It assumes that third-party
applications are not trusted and monitors how the applications
propagate sensitive data. TainDroid limits the flow of sensitive
data by tracking the taints in the outbound network con-
nections. TaintDroid is not capable of enforcing fine-grained
policies to let only specific tagged data to flow to application
or to network connections. Similar to TaintDroid, Paranoid
Android [20] proposes tainting of data for runtime checks. In
Paranoid Android security analysis is executed by a trusted
remote server, which hosts the replicas of smart phones in
virtual environments. However, this approach has a severe
impact on the device performance since execution traces have
to be continuously sent over the remote servers.

QUIRE [12] provides a lightweight provenance system
that prevents the confused deputy attacks where a malicious
application abuses the interfaces of a trusted application to
perform an unauthorised operation. QUIRE addresses the
problem by tracing RPC chains to establish if all callers in
the chain have the necessary privileges to execute the call.
Tracing is realised by modifying the Android native RPCs.
This however has the drawback that QUIRE solution is not
transparent to application developer that need to rewrite their
existing applications. Furthermore, QUIRE does not solve the
problem of filtering sensitive data based on user’s policies
and the leakage of information to unauthorised remote sinks
via internet. Also, QUIRE is not effective against colluding
applications that try to spread privileges.

A solution similar to ours is AppFence [16]. By using
Taintdroid’s tainting capability, AppFence provides additional
mechanisms to shadow sensitive data and to block exfiltration,
that is the unauthorised leakage of data via network access.
Shadowing allows only data anonymisation and does not



support other transformations over sensitive data. The authors
present in the paper also an assessment on the side effects
of such privacy enhancing mechanisms over a set of 50
applications and observe that roughly two third of them do not
present any user visible side effect. Also, different from our
solution, AppFence does not address the problem of privilege
spreading of colluding applications.

XManDroid [8] performs runtime monitoring and analy-
sis of communications between applications. It maintains a
system state of the applications installed in a device and all
the communications links (control and data flow) established
among the applications. XMAnDroid monitors the ICC traffic
and validates whether an ICC call can potentially lead to a
spreading of privileges according to a desired system policy.
The main limitation of the this approach is that cannot be used
to control communication channels established outside the ICC
framework, such as Internet communications. Another short-
coming of XManDriod is that it does not support fine-grained
access policies, thus enabling only all-or-nothing access on the
data.

III. ANDROID SECURITY

Google Android is a Linux-based mobile platform devel-
oped by the Open Handset Alliance (OHA) [2]. Most of the
Android applications are programmed in Java and compiled
into a custom byte-code that is run by the Dalvik Virtual
Machine (DVM). In particular, each Android application is
executed in its own address space and in a separate DVM.
Android applications are built combining any of the following
four basic components. Activities represent a user interface;
Services execute background processes; Broadcast Receivers
are mailboxes for communications within components of the
same application or belonging to different applications; Con-
tent Providers store and share application’s data. Application
components communicate through messages called Infents.

Focusing on security, Android combines two levels of
enforcement [15], [22]: at the Linux system level and the ap-
plication framework level. At the Linux system level Android
is a multi-process system. During installation, an application is
assigned with a unique Linux user identifier (u1p) and a group
identifier (crp). Thus, in the Android OS each application is
executed as a different user process within its own, isolated,
address space.

At the application framework level, Android provides access
control through the Inter-Component Communication (ICC)
reference monitor. The reference monitor provides Manda-
tory Access Control (MAC) enforcement on how applications
access the components. In the simplest form, protected fea-
tures are assigned with unique security labels—permissions.
Protected features may include protected application compo-
nents and system services (e.g. Bluetooth). To make the use
of protected features, the developer of an application must
declare the required permissions in its package manifest file -
AndroidManifest.xml.

As an example, consider an application that needs
to monitor incoming SMSs, AndroidManifest.xml
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included in  the  application’s  package  would
specify: <uses—permission android:name=
"android.permission.RECEIVE_SMS"/>. Permissions
declared in the package manifest are granted at the
installation time and can not be modified later. Each
permission definition specifies a protection level which can
be: normal (automatically granted), dangerous (requires
the user confirmation), signature (requesting application
must be signed with the same key as the application declaring
the permission), or signature or system (granted to

packages signed with the system key).

IV. YAASE ARCHITECTURE

Our main goal is to introduce in the Android platform a flex-
ible and powerful privacy enforcement framework transparent
to the applications. To achieve this goal, we have modified
part of the Android framework and core libraries, and a set
of services and managers that reside outside the application
VM. Figure 1 shows the architecture of our framework. In the
figure, the dashed blocks represent Android components that
we have modified, while gray blocks are the new components
introduced by YAASE.

We want to track the data stored on the phone that is
accessed by the applications and how this data is disseminated
both within the phone (i.e., from one application to another)
and when the data leaves the device (i.e., an application sends
the data over the internet). For tracking the data, we use the
TaintDroid labelling framework. We have extended TaintDroid
to be able to tag sensitive information with taint values that
are defined in our system in the Labelling Store. Each taint
is represented as a 32-bit value used to define the control
group, the taint label, and some extra information used for
history based inspection. The control group is used to specify
whether the data is coming from a system resource such
as the GPS provider by means of the ‘‘sysTeM_SENT’’ tag.
Also the control group can be used to specify that the label
associated with a data can be set as a consequence of a policy
evaluation. This is particular useful if the taint of data needs to
be augmented with labels to keep track of all the applications
that have received the data.

Once the data is tainted, we need to make sure that the
data is propagated according to the user’s requirements. In our
system, user’s requirements are represented as a set of policies
that can be defined per application (more on this aspect in
Section V-C). Policies are stored in the Policy Provider. To
be able to enforce policies and perform appropriate actions on
the data, we need to place hooks in the components of the
Android framework. For enforcing policies that control the
propagation of data from providers of the Android framework
to applications, we place a Policy Enforcement Point (PEP)
in the 1ibBinder module. In this way, we are able to enforce
policies for controlling access to simple resources, such as
device ID (IMEI), phone number and location data, as well as
complex data such as user’s calendar and contact entries. In
the LibBinder, we intercept the standard cursor from where
we extract the cursorWindow. The cCursorwindow provides
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methods that can be used for modifying the data contained
in the cursor. Using the cursorwindow allows us to filter out
from the cursor data only part of the information. In this
way, our enforcement mechanism achieves a fine-grained filter
capability that other solutions, such as AppFence, are not
capable to achieve. For instance, AppFence is only able to
substitute the content of the returned cursor with a shadowed
content. In our framework, policies can perform several type
of actions on the data before returning it to the requester.
The actions that can be invoked by the policies are defined
in the Action Library. More details on this feature will be
provided in Section V where we present our policy language
and several examples of policies. Another PEP is placed in the
Java Framework Library (JFL) of the Dalvik Virtual Machine
for capturing operations on the file system (such as reading
and writing on the local storage as well as accessing the
phone camera and microphone) and on the network stack
for controlling network traffic even if sent over an encrypted
socket (SSL). We have modified the socket.open (address)
method to inspect the address to where the data is sent.

In this way, we can restrict the use of only authorised
addresses or substitute the address specified by the applica-
tion with an address defined by the user. By modifying the
sendStream () we are able to intercept the data before it is sent
and perform some actions, such as filtering or substitutions.
Again, we would like to stress that this level of control
granularity is not achieved by any other approach known to
us.

When an application requests access to a resource, the PEP
intercepts the request. The PEP collects information about
application UID, the resource being accessed and the type
of operation. Moreover, if available the PEP collects the tag
information associated with the data. The PEP forwards this
information to the Policy Decision Point (PDP). The PDP uses
the information received by the PEP to retrieve the policies
relevant to the request from the Policy Provider. Based on
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The YAASE architecture.

the evaluation of the policies, the PDP might decide not to
allow the request or to perform some action on the data before
returning it to the requesting application. The PDP informs
the PEP of the decision and then it is the responsibility of the
PEP to take the necessary actions for the enforcement of such
a decision.

Finally, we have included in the Android application in-
staller the User Settings Interface (USI) component. This
interface enables the user to define/modify policies when an
application is installed. Moreover, a user can set data labels
to be associated with resource providers and that are used by
the tainting mechanism. The USI enables advanced users to
install routines to perform actions (such as filtering, generating
hash values for the phone IMEI, etc) that can be used by the
policies. The USI also allows the user to change at runtime
any of the security configurations defined at installation time.

V. YAASE PoLICY LANGUAGE

In this section, we first present our policy language for
controlling data dissemination in the Android platform. Af-
terwards, we will present two application scenarios to demon-
strate how policies can be specified to control data access.
Finally, we provide some details on how policies can be
automatically generated at application installing time.

Figure 2 shows the syntax of a YAASE policy. Policies
are identified by a name and define what operations a
Requester application can execute on a Resource. In our
framework, a resource can be represented by either the content
and service providers within a phone, or other applications
that expose services for other applications to be invoked.
A policy can have an optional clause have to perform that
specifies actions that have to be performed if this policy is
enforced. In our framework, we have provided a set of libraries
that can perform several actions on the data (i.e., filtering,
anonymisation, generation of random values) and changing the
values of the parameters of the operation being executed. The
handle clause defines an expression on the labels associated



1 PolicyName:
5

3

Requester can do operation on Resource
[have to perform action]
handle datalabelExpression

Fig. 2. The syntax of our policy language.

OrgAppPl: OrgApp can do getContacts on Contacts

have to perform filterOut (‘‘Pr’’, returnData);
handle ‘‘Pub’’ and ‘‘Contact’’

OrgAppP2: OrgApp can do send on Internet

have to perform sendOnlyTo (aCloudUrl) ;
handle ‘‘Pub’’ and ‘'‘Contact’’

Fig. 3. The policies specified for the OrgApp scenario.

with the data that is being passed from the rRequester to the
Resource if operation is a setter method, that is a method
that does not return any data. Otherwise, if the operation is
a getter method that provides data from the rResource to the
Requester, the expression defined in handle clause refers to
the labels associated with the returned value.

In the following, we show the features of our language by
means of policy examples for different application scenarios.

A. Fine-grained Access Control Policies

We start with some examples of policies for fine-grained
control over applications accessing user data. Let us consider
an Organiser application (OrgApp) providing a smart way
of organising the user’s contacts and a back-up capability
that stores the user’s contacts over a cloud service. For its
functionalities, the OrgApp requires access rights to the phone
contact provider and to the internet service. In this scenario,
the user wants that only her work contacts are accessible to
the OrgApp. Moreover, the user wants to make sure that the
OrgApp sends the contacts to a specific location over the
internet. The user’s requirements can be expressed by two
policies as in Figure 3.

In particular, the policy orgappp1 specifies that the Or-
gApp can perform the getContacts operation on the contact
provider. We assume the user has tagged each contact entry
with a label to indicate whether it is a working contact
(associated with label *‘pub’ ) or a private contact (associated
with label *+pr-+).! The contacts are returned to the OrgApp
through a cursor containing all the entries. This means that
the cursor will be tagged with labels “Pub” for the working
entries, “Pr” for the private entries, and “Contact” to indi-
cate it contains data coming from the contact provider. To
remove from the contacts private entries, the policy invokes
the filterout action on the returned cursor (indicated as
returnData) removing all the entries tagged with label *pr’ 7.
After the execution of the filterout action, the new cursor
is now tagged with only “Pub” and “Contacts” labels. At
this point, the condition specified by the handle on line 3
is satisfied and the data can be returned to the OrgApp. If

ITo tag entry contacts the user can use an extended contact provider that
supports such a capability.
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the have to perform clause had not been specified, then the
cursor would have been tagged also with label “Pr”. Because
the expression of the handle clause defines which are the
only labels permitted then the policy would have denied the
returning of the data to the OrgApp.

The policy orgappr2 authorises the OrgApp to access the
internet. However, it enforces that the OrgApp can connect
only to a specific url that can be decided by the user. This is
achieved by defined the value acioudurl and specifying the
sendOnlyTo action in the have to perform clause. To make
sure the data that is sent are only public contact entries, the
handle clause is specified for handling only data tagged with
“pub’’ and ‘Contacts’’ labels. With this policy, we can
prevent the application to send the user’s contact to other on-
line services. Moreover, if the application would get access
to other type of data (for example call history) tagged with
other labels then this policy would not allow the sending of
this data over the internet.

YAASE allows the execution of very fine-grained controls
that are not supported by other approaches. For instance,
the data shadowing and exfiltration blocking supported by
AppFence are too coarse-grained control mechanism to let the
OrgApp to function correctly while guaranteeing a desirable
level of user’s privacy. Data shadowing is a means for provid-
ing fake data. In this scenario, the data shadowing approach
of AppFence would have returned to OrgApp an empty list
of contacts making OrgApp completely non functional for
the user. If the user decides not to use data shadowing, then
OrgApp would get access to the whole set of contacts, that
is tagged with private and public label. When the OrgApp
would send the contacts to the cloud service, AppFence would
block the exfiltration of tainted data even if the OrgApp is
sending the data to the url set by the user. Exfiltration blocking
prevents tainted data to be written in a socket. Basically, when
an output buffer contains tainted data AppFence drops the
buffer covertly, misleading the application by indicating that
the buffer has been sent, or overtely, by emulating the OS
behaviour when the device is in airplane mode. Again, such
a mechanism is too restrictive and would make the OrgApp
useless to the user.

B. Preventing Access Right Spreading

One of the main security issues of the Android platform
is the spreading of access permissions. Applications can
implement services. These services can be invoked by other
applications. In this way, the application implementing the
service can allow other applications to use its permission
to access phone resources. To make matter concrete, let us
consider the following scenario. An application A requests
permission to access the internet. The application A could pose
as a simple application to provide news feeds and it would not
look suspicious to the user. An application B that acts as a
navigation application requires permission to access the GPS
to display the user’s current position. Moreover, application B
implements a service that allows other applications to access
the GPS through application B permission. Application A has



PolicyAl: A can do send on Internet

1
2 handle ‘‘NoLabels’’
3
4 PolicyBl: B can do access on FineLocationGPS
5 handle ‘'‘FineLocation’’
Fig. 4. Policies for preventing permission spreading through backdoor

services.

PolicyA2: A can do access on LS

1
2 handle ‘‘NoLabels’’
4 PolicyB2: B can do access on LS
5 handle ‘‘FineLocation’’
Fig. 5. Policies for preventing permission spreading through file sharing.

code that invokes the service of application B to get access to
the GPS without the user knowing about this. Thus, application
A without asking the user for the GPS permission would be
still able to get that information and it could be able to leak
the user’s location over the internet.

YAASE can prevent this type of attacks by means of con-
trolling the data flow through applications. When application
A and B are installed the policies in Figure 4 will be generated.

When application A accesses the internet, Policyal would
be enforced. This policy allows the application A to use the
internet service. However, the data that can be sent from
application A to the internet must not be tagged with any
labels. policyBl takes care of letting application B access
the fine location service and lets only data tagged with the
“‘FineLocation’’ label to be propagated. When the appli-
cation A accesses the service exposed by B, it will be able
to access the location data. However, when A tries to send
the data to the internet, this data will be still tagged with label
“‘FineLocation’’. Therefore, Policyal will not authorise the
execution of such action because it is in conflict with its
handle clause stating that only no tagged data can be sent
over the internet through application A.

Another way for application A and B to maliciously col-
laborate is by means of indirect flow: for instance by means
of sharing data through the mobile local storage. Both appli-
cations in addition to the permissions requested before also
require access to the local storage that the user is willing to
grant. As a consequence of this, two new policies will be
generated as shown in Figure 5. policya2 authorises applica-
tion A to access the local storage. However, the data that can
be written or retrieved should not have any labels. PolicyB2
grants access to application B to the local storage only for data
tagged with *‘FineLocation’’. When application B stores the
data in the local storage, this data will be tagged with label
“‘FineLocation’’. If application A tries to access this data
from the local storage then policya2 will not authorise this
action since A can access only data with no labels.

An alternative to the policy policyB2 would be a policy
that allows application B to only access the local storage to
read and write data with no labels as shown in Figure 6.
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1 PolicyB2Alt: B can do access on LS
2 handle ‘‘NoLabels’’
Fig. 6. A policy that allows application B to use the local storage for data

with no labels.

It is worth to note here that the permission spreading attack
is a more general case of the confused deputy attack described
in QUIRE. In the case of the confused deputy described in
QUIRE, application B would be a trusted application while
application A is an evil application that misuses the API of
application B for accessing the fine-grained location data. To
defeat a confused deputy attack, QUIRE relies on application
B to correctly forwarding the complete call chain to allow
the location provider to check whether application A has the
required permission. However, if application B misbehaves
and does not propagate the call chain then application A can
still get access to the location information. In our framework,
we do not rely on any application to correctly propagate the
data labels. Therefore, we can prevent both types of attacks. It
should also be noted that the QUIRE approach cannot prevent
application A from accessing the location information from
the local storage even if application B would be trusted.

C. Policy Generation

We do not expect that the average Android user is able
to create policies when installing applications. For this rea-
son, we have extended the Android installer with the User
Setting Interface (USIT) component (see Figure 1). When a
new application is installed, the installer presents to the user
the set of permissions that the application requires. These
permissions are extracted from the application manifest file.
The USI intercepts the permissions requested by an applica-
tion and generates policies and labels according to type of
permissions that the application is requesting. For instance,
when the OrgApp is installed it requires access to the phone
contacts (Reap_conTacTs) and internet (INTERNET). The first
requirement will trigger the USI to generate a basic policy for
OrgApp to access the contacts and the internet as in Figure 7.
The USI checks in the Labelling Store for possible extra labels
associated with the data type requested from the application.
For contacts two extra labels are specified for public and
private entries. The USI will prompt the user for allowing the
OrgApp to access these two subtypes. The user selects only
the “Pub” label to be associated with the OrgApp.

Then the USI will modify the handle clause adding the
“rpup’’ label, and generate the have to perform clause for
filtering out the contacts tagged with the “Pr” label. Moreover,
the USI will inform the user that OrgApp could also send the
contacts over the internet and whether the user is willing to
grant this type of permission to the application. The user will
agree to propagate the data that OrgApp has access to to the
internet. The result of this is shown in Figure 8. Finally, the
user decides that OrgApp has to access only one specific cloud
service and selects it for the USI. This will allow the USI to



| OrgAppPl: OrgApp can do getContacts
on Contacts
have to perform

filterOut (*‘Pr’’,

©

returnData) ;
3 handle ‘‘Pub’’ and ‘'
1 OrgAppPl: OrgApp can do getContacts Contact’’
on Contacts 4
2 handle ‘‘Pub’’ and ‘' 5 OrgAppP2: OrgApp can do send on
I OrgAppPl: OrgApp can do getContacts Contact’’ Internet
on Contacts 3 6 have to perform
2 handle ‘‘Contact’’ 4 OrgAppP2: OrgApp can do send on sendOnlyTo (aCloudUrl
3 Internet )i
4 OrgRppP2: OrgApp can do send on 5 handle ‘‘Pub’’ and ‘' 7 handle ‘‘Pub’’ and ‘'
Internet Contact’’ Contact’”’
Fig. 7. Basic generation of policies Fig. 8. Extending the policies Fig. 9. Final policies.

generate the have to perform clause in the orgappp2 policy
as shown in Figure 9.

Similarly to the case of the READ_CONTACTS permission, the
USI checks whether the user associates data with extra labels
for READ_CALENDAR, READ_LOGS, READ_SMS, and GET_ACCOUNTS
permission requests. For permissions that enable applica-
tions to generate data traffic, such as INTERNET, SEND_SMS,
canr_prHONE and BLUETOOTH_ADMIN, the USI enables the user
to set specific destinations or to black list addresses and phone
numbers. Moreover, when these permissions are combined
with permission for access data then the USI always prompts
the user for explicit consent to allow the application to
combine the permissions.

The user can change at runtime the permissions granted
to an application by disabling the respective policy. YAASE
enforcement mechanism overwrites the check permission of
the standard Android. YAASE enforces a negative-by-default
policy meaning that if there is no policy associated with an
application request then the request is not granted.

VI. PERFORMANCE EVALUATION

In this section, we performed a preliminary evaluation of
our solution. Since the time overhead is a fundamental issue
to have a usable policy enforcing system, we aim here at
evaluating the time overhead of YAASE as compared to
standard Android. All simulations were run on the Android
Emulator with the portable VM (written in C). To measure
the time overhead, we hooked a call to System.nanoTime()
before and after the event to be measured, to compute the
time (in nanoseconds) required by the single operations.

TABLE I
PERFORMANCE OF READING OPERATIONS FOR CONTACTS WITH STOCK
ANDROID AND WITH YAASE FILTERING POLICIES. TIME IN SECONDS.

Configuration Read 100 Contacts
Stock Android 0.048
YASSE filtering 0 1.9

YASSE filtering 20 2.0

YASSE filtering 40 2.1

YASSE filtering 60 2.1

YASSE filtering 80 2.4

We evaluated the effects of YAASE on the throughput
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performance of the Android platform. We performed read
operations on 100 contacts with the stock Android and with
YAASE where filtering policies where activated for removing
private data. For the case when YAASE is activated, we have
changed the number of private contacts from O to 80. The
results shown in Table I are averaged over 50 executions. The
second row represents the execution time for the stock Android
for performing a read of 100 contacts. The third row reports the
time values for performing the same operations but this time
with YAASE framework active. We have inserted a policy that
filters out private data. However, since all contacts are set as
public (0 private contacts) then no filtering is perform although
the have to perform clause is executed. From the fourth row,
we have increased the number of private contacts from 20 up
to 80 (last row). We can see that the overhead introduced by
YAASE is quite high. However, these experiments have been
executed on non-optimised data structures.

In the second set of experiments, we have evaluated the
enforcement of filtering policies over data sent on the internet.
In particular, we have used location data that was sent over
the internet using the sentStream method to write data
over a socket. We have changed the size of the packets sent
over the stream using 8, 16, and 32 bytes. For each packet
size, we have measured the sending time in stock Android.
Then, we activated YAASE and used two different policies.
One policy was dropping the packet when data tagged with
the location label was in it (YAASE dropping). The second
policy instead was filtering the location data by replacing the
bytes. Although the overhead introduced by YAASE is still
10 folds than standard Android, the sending operations are
still performed within 100 milliseconds. Moreover, it stands to
reason that on an actual device running the ASM interpreter,
these values will only decrease. Supported by these results, we
can conclude that YAASE’s overhead would not be noticed by
the user.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented YAASE an Android
security extension that supports fine-grained access control
policies. YAASE makes use of the TaintDroid taint mechanism
for tagging data and enforcing security decisions on how
data has to be disseminated within the device (application



TABLE II
PERFORMANCE OF SENDING LOCATION DATA OVER THE INTERNET WITH
STOCK ANDROID AND WITH YAASE FILTERING POLICIES. TIME IN

MILLISECONDS.

Packet Size
Configuration 8 bytes | 16 bytes | 32 bytes
Stock Android 8.7 8.6 7.9
YAASE Dropping 101 93 91
YAASE Filtering 80 93 82

to application) or the outside world (through internet con-
nections). Compared to other approaches, YAASE is able to
filter out data tagged with user-defined labels (such as public,
private, confidential, etc.). In this way, applications can still
access the data without reaching for user’s sensitive informa-
tion. Moreover, YAASE enables the user to control internet
connection only allowing applications to communicate with
specific URLs. YAASE policy enforcing mechanism is able
to contrast privilege spreading attacks by controlling which
labels can be handled by each application. Such a mechanism
is also very effective against confused deputy attacks (which
are more specific cases of privilege spreading attacks). We
have implemented YAASE and analysed its performance in
comparison with stock Android. Our results show that while
the overhead for accessing un-optimised data structure is quite
noticable, in the case of filtering data sent over the internet the
overhead is quite acceptable.

As a future work direction, we are planning to extend the
capabilities for the USI component to make simpler for the
average user to express security requirements. One way of
doing this would be to let the YAASE system learn about
the user decisions in order to automatically define security
policies.

As a final note, we observe that while patching Android se-
curity by extensions can be a useful paradigm for researchers,
it may not be the best way for consumers. Thus, our hope is
not to come in future with a yet yet another security android
extension but rather to see some of the ideas proposed by
security researchers working in this area, implemented in the
next official release.
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