
Experimental Security Analysis of Sensitive Data Access by
Browser Extensions

Asmit Nayak∗
anayak6@wisc.edu

University of Wisconsin – Madison
Madison, Wisconsin, USA

Rishabh Khandelwal∗
rkhandelwal3@wisc.edu

University of Wisconsin – Madison
Madison, Wisconsin, USA

Earlence Fernandes
efernandes@ucsd.edu

University of California, San Diego
San Diego, California, USA

Kassem Fawaz
kfawaz@wisc.edu

University of Wisconsin – Madison
Madison, Wisconsin, USA

ABSTRACT
Browser extensions offer a variety of valuable features and func-
tionalities. They also pose a significant security risk if not properly
designed or reviewed. Prior works have shown that browser ex-
tensions can access and manipulate data fields, including sensitive
data such as passwords, credit card numbers, and Social Security
numbers. In this paper, we present an empirical study of the secu-
rity risks posed by browser extensions. Specifically, we first build a
proof-of-concept extension that can steal sensitive user information.
We find that the extension passes the Chrome Web Store review
process. We then perform a measurement study on the top 10K
website login pages to check if the extension access to password
fields via JS. We find that none of the password fields are actively
protected, and can be accessed using JS. Moreover, we found that 1K
websites store passwords in plaintext in their page source, including
popular websites like Google.com and Cloudflare.com. We also
analyzed over 160K Chrome Web Store extensions for malicious
behavior, finding that 28K have permission to access sensitive fields
and 190 store password fields in variables. To analyze the behavioral
workflow of the potentially malicious extensions, we propose an
LLM-driven framework, Extension Reviewer. Finally, we discuss two
countermeasures to address these risks: a bolt-on JavaScript pack-
age for immediate adoption by website developers allowing them
to protect sensitive input fields, and a browser-level solution that
alerts users when an extension accesses sensitive input fields. Our
research highlights the urgent need for improved security measures
to protect sensitive user information online.

CCS CONCEPTS
• Security and privacy→ Browser security; • Information sys-
tems → Browsers; • Computing methodologies → Multi-agent
systems; Intelligent agents; Information extraction; Natural
language generation.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645683

KEYWORDS
browser extensions, data privacy, chrome web store, browser vul-
nerabilities, sensitive data access

ACM Reference Format:
Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz.
2024. Experimental Security Analysis of Sensitive Data Access by Browser
Extensions. In Proceedings of the ACM Web Conference 2024 (WWW ’24),
May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3589334.3645683

1 INTRODUCTION
Browser extensions, while enhancing web browsers and user ex-
perience, pose significant security risks. The underlying cause of
the risk is the unfettered access of the HTML DOM tree to browser
extensions (or any JavaScript) loaded onto the webpage. Exten-
sions are loaded at the same context level as the DOM nodes. This
leads to a lack of security boundary between the extension and the
web page’s content, including sensitive information that users may
enter. This violates the users’ expectation of security concerning
sensitive information such as passwords, credit card information,
and Social Security Numbers (SSNs). Guha et al. [10] first identified
this issue in 2011 and proposed restricting access to potentially
sensitive DOM nodes. Subsequently, Liu et al. [15] proposed a new
permission model by adding a sensitivity attribute to HTML ele-
ments to manage access to sensitive elements. These proposals did
not become mainstream, possibly due to their impact on the usabil-
ity of extensions such as password managers. Password managers
rely on accessing the password fields to save users’ passwords and
provide autofill features that do not require users to remember the
passwords. Implementing these security measures might impact
the usability of the extensions like password managers. As such,
these vulnerabilities are still present in the browser ecosystem.

Prior work has shown that it is possible to exploit these vulner-
abilities to read sensitive user data such as emails [15, 26], pass-
words [2, 26], and even perform phishing attacks [2, 20, 26]. These
attacks can either use: a) Static Code Injection where the attackers
add the malicious code in the extension; or b) Dynamic Code Injec-
tionwhere the code is loaded dynamically from a remote server and
executed at run time. Static code injection is impractical as they
can be detected by static code analysis [5, 6, 30, 35]. Dynamic code
injection bypasses the static security checks as the code is injected
at run time, and thus, is harder to detect [11, 25]. To address this

https://orcid.org/0009-0005-7143-2892
https://orcid.org/0000-0003-3276-5764
https://orcid.org/0000-0001-8593-2840
https://orcid.org/0000-0002-4609-7691
https://doi.org/10.1145/3589334.3645683
https://doi.org/10.1145/3589334.3645683


WWW ’24, May 13–17, 2024, Singapore, Singapore. Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz

vulnerability posed by dynamic code injection, Google introduced
new regulations in Manifest V3 that disallowed the execution of
remotely injected code. However, as we show in Section 3.3, by-
passing the defense and executing malicious remote code to steal
sensitive information is possible.

In this work, we conduct an empirical study to understand the
extent to which these vulnerabilities can be exploited. First, we
develop a proof-of-concept extension that extracts users’ passwords
while being disguised as a ChatGPT plugin (Section 3). We submit
the extension to ChromeWeb Store and find that it passes the review
process, indicating the feasibility of such an attack. Next, we analyze
the login pages of the top 10K domains to see if the password values
can be extracted using our extension. Finally, we perform static and
dynamic analysis of 28K extensions on the Web Store to identify
the following: (1) extensions that have the necessary permissions
to carry out the attack and (2) extensions that are actively accessing
and storing password values. With this analysis, we identify 190
potentially malicious extensions that access password fields.

To further understand the behavioral data flows of these ma-
licious extensions, we propose Extension Reviewer, a novel LLM-
driven framework that helps review the extensions. We use LLMs
because, while static and dynamic analysis effectively analyze code
structures and patterns, they do not capture behavioral patterns
that emerge from high-level logic. LLMs have been shown to have
richer and more detailed high-level understanding, allowing them
to complete tasks like generating unit tests for software [22, 28]
and reasoning about program invariants [19]. Furthermore, static
and dynamic analysis can be sensitive to code obfuscation [1].

In the Extension Reviewer framework, LLMs are tasked to ana-
lyze the source code of the extensions and use chain-of-thought
prompting to understand the behavioral flows of the extension.
Performing this analysis, we identify one extension accessing the
password fields and sending the passwords over the network. We
further show that Extension Reviewer can identify potentially mali-
cious extensions even when the malicious execution is dynamically
loaded at runtime. We plan to release the framework publicly.

Finally, we discuss two countermeasures to mitigate the security
risks from the observed vulnerabilities. In our Bolt-on solution, we
provide a JavaScript package that website developers can adopt
today to mitigate the attacks (Section 8.2). The package introduces a
new input type SecureInput that uses WeakMaps1 to store sensitive
values in private variables. We also discuss a more fundamental
browser-level solution (Section 8.2) by instrumenting chromium
to alert users when an extension accesses sensitive input fields.
We also discuss the impact of these solutions on password man-
agers and argue that the usability of password managers can be
maintained without compromising the security of the input fields.
Contributions. In this work, we make the following contributions:

• We develop a proof-of-concept browser extension disguised
as a ChatGPT plugin, demonstrating that it can bypass the
Chrome Web Store review process, thereby highlighting
potential weaknesses in the current review mechanisms.

• We analyze the login pages of the top 10K domains, revealing
that many websites are susceptible to potential attacks from

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/WeakMap

malicious extensions. Our analysis of 28K extensions on
the Chrome Web Store further identified that a significant
number have the necessary permissions to exploit these
vulnerabilities.

• We introduce Extension Reviewer, a novel LLM-driven frame-
work designed for in-depth browser extension source code
analysis. This tool, enhanced by chain-of-thought prompt-
ing, can effectively identify extensions that access sensitive
user data and detect dynamically loaded malicious code.

2 BACKGROUND AND RELATEDWORKS
2.1 HTML Fundamentals
HTML Input Elements: Input fields, marked by the <input> tag,
serve as themost basic avenue for users to input data into awebpage.
Password fields, generally used for sensitive content, obfuscate the
text written in the input field. Ensuring that malicious actors cannot
access input fields is crucial, as automated scripts or bots can harvest
exposed sensitive data.
DOM Tree: While rendering a webpage, the browser constructs a
Document Object Model (DOM) of the page. This DOM, composed
of nodes and objects, replicates the webpage as a tree structure,
known as the DOM Tree. The tree’s root initiates with the <html>
element. The nodes of the tree can be accessed and manipulated by
any JavaScript (JS) loaded on the page via the DOM API.
Dynamic Code Injection: JavaScript allows the execution of
strings as JavaScript code using the eval() function. While eval
can be legitimately used to generate code based on specific con-
ditions dynamically, its use is generally viewed as a security risk
due to its potent nature. Extensions have been known to use eval
statements to inject code into webpages dynamically. Kapravelos
et al. [11] found more than 400 Chrome extensions using eval
statements with inputs exceeding 128 characters. Similarly, Wang
et al. [29] discovered 145 extensions on the Firefox add-on store
that contain the eval statement. Subsequently, Google introduced
Manifest V3, removing the usage of eval statements.
Browser Architecture: Prior research has investigated how modi-
fications to browsers’ underlying structure can enhance user pri-
vacy and security. Louw et al. [16] suggested incorporating a new
runtime monitoring framework to observe an extension’s access
to sensitive APIs, such as adding an event listener to secure fields
like passwords. Guha et al. [10], and Liu et al. [15] recommended
adding new permissions to access specific DOM elements. Bauer et
al. [2] explored how extensions could bypass the existing Chrome
permission structure to execute various attacks.

2.2 Browser Extensions
Permission Models: Browser extensions use the manifest file to
request necessary permissions, categorized into host and API per-
missions. Host permissions specify websites the extension needs to
access, while API permissions allow interaction withWebExtension
APIs, like browser.storage or browser.cookies.
Content Scripts and Background Pages: Extensions consist of
two main components: content scripts and background pages (or
service workers). Content scripts are static JavaScript files that
are automatically loaded with a webpage. These scripts run in the

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap


Experimental Security Analysis of Sensitive Data Access by Browser Extensions WWW ’24, May 13–17, 2024, Singapore, Singapore.

webpage context as an extension to the DOM tree. Background
pages, in contrast, are not loaded with each website; they react
to browser events or carry out WebExtension API-based actions.
Although content scripts have access to certain WebExtension API
functions, their access is limited in scope. To leverage the full extent
of the APIs, content scripts communicate with the background page
via message passing2.

While extensions can load static JavaScript as content scripts,
they can also use a mix of host permissions and browser APIs to
inject JavaScript into webpages programmatically. For example,
an extension can request no websites under content scripts but
then request scripting and host permissions on all websites to
inject content scripts on websites dynamically. Furthermore, con-
tent scripts, without host permissions, must comply with website-
defined cross-origin restrictions, unlike scripts injected via host
permissions and API. This compliance limits their interaction with
external entities, although they can still send and receive messages
from the extension’s background script.

Attacks involving Extension: Prior studies [7, 16, 17, 29] have
detailed various techniques by which malicious extensions could
leak sensitive information. Bauer et al. [2] developed an iframe-
based attack to stealthily steal user credentials by leveraging the
autofill functionality of password managers. Similarly, Perrotta et
al. [20] crafted an extension that performed an iframe-based phish-
ing attack where their extensions would fetch dynamic codes from
a server and execute them. They managed to bypass and publish
their extension to the Chrome Web Store. These attacks are no
longer viable due to Chrome’s ban on dynamic remote code execu-
tion. We note that Somé et al.[24] investigated how malicious web
apps could exploit vulnerable extensions to gain elevated privileges.
However, our threat model considers the extensions themselves to
be malicious.

In this work, we build a proof-of-concept extension to extract
sensitive information, submit the extension to the Chrome Web
Store, and find that it bypasses the security checks, showing the
practicality of the attack (see Section 3.3).

Detection of Malicious Extensions: Previous studies have de-
veloped various methods to detect malicious browser extensions.
Works by Zhao et al. [35] and Wang et al. [30] utilized both static
and dynamic analysis for detection, focusing on information leaks
and DOM changes, respectively. Varshney et al. [26] introduced a
static analysis framework, while DeKoven et al. [6] detected mali-
cious extensions by flagging suspicious user behavior on websites,
subsequently scanning all loaded extensions for specific threat in-
dicators. Shahriar et al. [23] used a Hidden Markov Model to detect
vulnerable and malicious extensions. Toreini et al. [25] developed
DOMtegrity to monitor and flag suspicious DOM manipulations.
Additionally, dynamic analysis frameworks by Kapravelos et al.[11]
and Chen et al.[5] matched runtime behaviors against predefined
heuristics to identify malicious extensions.

Our work complements this line of study, offering a security anal-
ysis of vulnerabilities affecting browsers and generic solutions to
address these vulnerabilities. This work focuses on Google Chrome
as it is well-documented and the most popular browser.

2https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

iFrame

Background Script

HTML DOM Tree

Username Password SSN Security Boundary

Content Script

External Server

Extension

Figure 1: Comparison between iframes and browser exten-
sions in relation to a website’s DOM tree. While the Same
Origin Policy isolates iframes, extensions operate without
such restrictions, allowing them to access any element of the
DOM tree, including sensitive user data.

2.3 LLMs and Program Analysis
Large language models (LLMs) are tranformer [27] based mod-
els trained on massive text datasets, allowing them to generate
human-like text and engage in natural language conversations.
These models have enabled new applications in areas like conver-
sational agents, text generation, and question-answering.

Program Analysis. Program analysis refers to analyzing a pro-
gram’s source code to identify errors and potential security vulner-
abilities. LLMs have been used to perform program analysis [14,
19, 34]. For example, LLMs have been proposed to understand the
behavior of code constructs [18] and generate test cases [22, 28].
In this work, we leverage LLMs to understand the data flows in
extensions that access sensitive data. Specifically, we first identify
extensions that access user passwords. We then propose an LLM-
driven framework to analyze the extension to uncover the data
flow associated with the passwords to identify if the extensions are
leaking passwords.

LLM Frameworks. LLM frameworks are software platforms that
enable users to develop and deploy LLM-based applications. These
frameworks provide APIs for interacting with LLMs and tools
for managing and deploying applications. In this work, we use
LangChain to build a framework to understand the data-flows in
potentially malicious extensions, described in detail in Section 7.

3 SECURITY LANDSCAPE OF EXTENSIONS
We analyze the interaction of browser extensions with input fields
to identify potential design issues in the accessibility of input fields
by extensions. While JavaScript running on the page can access the
HTML elements similarly, we restrict our analysis to extensions
in this work as they operate within a controlled environment con-
strained by browsers’ policies, allowing us to identify and analyze
potential security risks.

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage


WWW ’24, May 13–17, 2024, Singapore, Singapore. Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz

3.1 Extension Priviledges
The existing permissions framework across all browsers exhibits
a coarse-grained approach, particularly concerning access to web
page content. The interaction of extensions with the HTML DOM
tree is shown in Figure 1. Once an extension is loaded on a webpage,
it has unrestricted access to all elements on the page, including
sensitive input fields. Such an extension, essentially a JavaScript
program loaded into the DOM tree of the page, can access and
potentially manipulate any data in the input fields on the page (Fig-
ure 1). This coarse-grained control contrasts with the fine-grained
access control for certain software and hardware resources, such
as location information or file storage.

One consequence of this coarse-grained model is the absence of
a security boundary between the extension and the HTML elements
(Figure 1). This contrasts iframes, governed by strict same-origin
policies that restrict access to the parent DOM tree and thus lie
outside the security boundary (as shown in Figure 1).
Isolating Extensions. Browsers follow a set of rules to isolate ex-
tensions to their environment. Before December 2020, Manifest V2
(MV2) governed the extensions’ interactions within the browser’s
boundaries. Previous research [20] identified MV2’s limitations and
showed how extensions could bypass it, raising security issues. One
significant MV2 security loophole was allowing eval() statements,
enabling extensions to execute any external JavaScript without any
checks. This leads to attacks such as iframe-based phishing and
password stealing [20].

3.2 Security landscape after Manifest V3
In December 2020, Chrome introduced Manifest V3 (MV3), substan-
tially changing privacy, security, and performance. From a security
standpoint, MV3 introduced declarativeNetRequest API for net-
work request modifications and discontinued the webRequest API,
disallowing extensions to modify network requests in real-time,
closing a major loophole [9]. MV3 also prohibited the execution
of remote code and the use of eval statements. Attackers exploited
this vulnerability in [20] to extract sensitive user data.

Despite MV3’s intended user privacy and security advancements,
the operations of content scripts remain unchanged. This main-
tains the lack of security boundary between the extension and web
page and allows an extension to be loaded on the DOM tree and
gain unrestricted access to the webpage, posing security risks for
the users. We use this vulnerability to design our PoC extension
(Section 3.3).
Impact on Review Process. Before MV3, Chrome’s Web Store
review process involved static and dynamic analysis combined with
developer-centric heuristics to detect malicious extensions. How-
ever, as demonstrated by [20], extensions can bypass this system,
successfully uploading amalicious extension to theWeb Store. After
MV3, Google prohibited all remote code execution and mandated
that all code be included within extensions as this permits more
reliable and efficient reviews of extensions submitted to the Web
Store [9].

3.3 Building PoC extension
Prior work has exploited the lack of security boundary between
the extension and the rest of the DOM tree [3, 7, 17, 26, 29]. They

either used static or dynamic code injection to extract sensitive
data. Extensions with static code are impractical as the malicious
code can be detected via code analysis [6, 10, 26, 30, 35]. On the
other hand, dynamic code injection attacks are not feasible after
the introduction of MV3. Thus, to build a practical extension and
exploit the observed vulnerabilities, we need - a) to access the input
elements without using dynamic code injection, b) to overcome
any obfuscation on the values of input fields, and c) to submit the
extension to chrome Web Store and clear the review process.

We note here that a malicious extension can also manipulate the
elements and modify the content to perform other attacks such as
screenshot attack [7] and phishing attacks [2, 20]. However, for the
PoC extension, we focus on the security of text input fields and
the sensitive information that can be extracted from them. As our
primary objective is to build a practical extension to pass the Web
Store review process and extract sensitive information, we build a
hybrid attack that leverages techniques from static and dynamic
code injections. Specifically, we designed our extension to include
a benign code template that identifies an element with a given CSS
selector. We dynamically retrieve the CSS selector string from a
server, which allows us to control the input fields at runtime. Once
we access the sensitive input field, we obtain its value and store
it. This technique is similar to that used by Khandelwal et al. [12].
We do not require additional permission to communicate with the
server and retrieve the CSS selector. We instead use the background
page to fetch the string and pass it through messages to the content
script, as shown in Figure 1.

3.4 Uploading to Web Store
Finally, we submit the extension to the Web Store to evaluate the
Web Store’s review process. The extension passed the review pro-
cess on the Google ChromeWeb Store. We disguised the extension’s
malicious aspects as a GPT-based assistant offering ChatGPT-like
functions on websites to hide the extension’s malicious aspects.
The extension asked for permission to run on all websites, which is
reasonable as most extensions that offer assisting features ask for
this permission.

Web Stores’ failure to identify the malicious extension high-
lights the need for more robust verification systems for browser
extensions. The existing security checks may not be sufficiently
comprehensive or effective in identifying potential threats. This is
particularly concerning given the potential for extensions to access
sensitive user data, including passwords and other input field data,
as shown in this work.
Ethical Considerations.We maintained ethical integrity through-
out the process by adhering to the established guidelines from
prior works [20]. Specifically, we ensure we do not collect sensitive
information from manual testers during the review process. Our
extension was engineered to interact with our servers, identify
the type of HTMLElement we were targeting (in this case, input
elements), monitor the values on those elements, and ultimately
transmit the recorded values back to our server. To protect the
privacy of the manual tester while not revealing the extension’s
malicious nature, we deactivated our data-receiving server, retain-
ing only our element-targeting server online. Consequently, our



Experimental Security Analysis of Sensitive Data Access by Browser Extensions WWW ’24, May 13–17, 2024, Singapore, Singapore.

extension would request the target element, acquire the CSS selec-
tor, and then attempt to send the recorded data to a non-existent
server. This procedure ensured that the primary operation of the
extension remained consistent with our original design. We up-
loaded the extension to the Web Store once, ensuring we did not
waste testers’ time during the manual review process. We did not
interact with human subjects, and our Institution’s Review Board
(IRB) approved the study. We acknowledge that our study involved
manual testers who invested their time. However, we note that
it was necessary to test the realism of the process effectively. Ad-
ditionally, we immediately removed the extension from the Web
Store once approved. We kept the extension in “unpublished” mode
so the users could not find and install it.

Upon approval, we disclosed this vulnerability to Google; how-
ever, they responded, stating, “...We understand that there are ma-
licious Chrome extensions on the store, and it is difficult to limit the
number of these extensions.”

4 MEASUREMENT OVERVIEW
Our next objective is to conduct comprehensive measurements
analyzing the robustness of existing practices in light of the vul-
nerabilities discussed above. Specifically, we perform large-scale
measurements along two dimensions: 1) Website measurement and
Extension Measurement.
Wesbite Measurement. In website measurement (Section 5), we
analyze the login pages of the top 10K websites to check if there
are any protections in place for password fields (shown in Figure 2).
Interestingly, we find a previously unknown vulnerability, Plaintext
Visible, where the password values are stored in plain text in the
page’s HTML source code. We found that more than 1100 websites
had this vulnerability. We also found that password values were
accessible via JavaScript APIs for all the analyzed login pages. It is
noteworthy that the ability of JS to access input fields is essential
for various types of form fields and password managers. However,
it also exposes the passwords to any extension that has permission
to run on the page.
Extension Measurement. In extension measurement (Section 6),
we use a combination of static and dynamic analysis to analyze 28K
chrome extensions to identify: a) how many extensions have the
necessary permission to steal user passwords, and b) how many
extensions actively access passwords fields. Figure 4 shows the
pipeline for measurement. We find 190 extensions accessing and
storing password fields. To further analyze the data flows in these
flagged extensions, we propose a novel LLM-driven framework,
Extension Reviewer (Section 7) that analyzes the source code and
allows us to analyze the behavior of the extension. We further
discuss the motivation to use LLMs in Section 7.

5 WEBSITES’ VULNERABILITIES
We conduct a comprehensive measurement to check the robustness
of the password fields against a malicious extension. Our infras-
tructure consists of a custom-built web crawler to navigate popular
websites’ login pages and inspect the HTML and JavaScript (JS)
elements associated with password fields. The crawler is equipped
with capabilities to handle different types of login forms, including

Tranco 

Top-10K 

8410 

websites

Analyzing 

login pages

1100 websites

7140 websites

Crawler
Login Page 

Detector

Plaintext 
Visible

API 
Accessibility

Figure 2: Our website vulnerability measurement pipeline
uses a custom crawler to identify login pages of websites and
detect the type of vulnerabilities present.

both static and dynamic forms.We ran the crawler from a controlled
environment to ensure measurement consistency.
Methodology: We perform the measurement using a Chromium
browser controlled via the Selenium library in Python. We also
install our PoC extension (Section 3) to extract the passwords. The
overview of the measurement pipeline is shown in Figure 2.

We use the top-10K domains from the Tranco3 list generated on
Feb. 2nd, 2023. We employ a two-tiered approach to identify and
analyze the login pages of these domains. First, we attempt to locate
the login button on the homepage of each domain by analyzing
the text of all clickable elements on the page and searching for
keywords associated with the login function. In case of failure, we
perform a search on DuckDuckGo using the query <domain name>
log[-?]in. We then select the top five pages from the search results
as potential login page candidates and analyze each candidate page
to determine if it is a login page. In particular, we treat a page as a
login page if there is a username/email field or a password field.

After finding the login page, we automatically enter a unique
username and password and attempt to extract them using the
extension. A login page can exist without password fields (e.g.,
linkedin.com). Specifically, there can be login pages where the
password fields appear only after the email/username is entered.
To capture the password field in such cases, we press ENTER after
inserting the username and check if the password field is present.
This lets us capture login pages where the password fields are
initially hidden.
Results: In our study, we identified login pages for 8,410 websites
out of the top 10,000 domains. Among these, we found password
fields present on 7,140 websites. The remaining 1,270 pages con-
tained username or email fields but no password fields. Notably, we
could extract password data from all the websites that presented
the password fields. Further analysis revealed that 1,100 websites
exhibited Plaintext Visible vulnerability; the password values were
displayed in plain text within the HTML DOM. Figure 3 shows
snapshots of these vulnerabilities, depicting password values in
plain text in the HTML. The underlying issue is that the value at-
tribute of the input element is set to update at each keystroke. In
most implementations of password fields, this value attribute is
omitted or kept empty.

Notably, we find that the Plaintext Visible vulnerability was
present on several popular websites, including but not limited to

3https://tranco-list.eu/list/4K4GX/1000000

linkedin.com
https://tranco-list.eu/list/4K4GX/1000000


WWW ’24, May 13–17, 2024, Singapore, Singapore. Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz

<input type="password" class="whsOnd zHQkBf" 
jsname="YPqjbf" autocomplete="current-
password" spellcheck="false" tabindex="0" 
aria-label="Enter your password" 
name="password" autocapitalize="off" dir="ltr" 
data-initial-dir="ltr" data-initial-
value="testing123" badinput="false">

(a) Plaintext Visible vulnerability
on google.com

<input type="password" class="inputtext _55r1 
_6luy _9npi" name="pass" id="pass" data-
testid="royal_pass" placeholder="Password" 
aria-label="Password">

> let t = document.querySelector(‘#pass’)
> t.value;
< testing123

(b) API Accessible vulnerability
on facebook.com

Figure 3: Different types of vulnerabilities found in the wild.
(a) The password is visible in the outerHTML of the element.
(b) The password is accessible via API calls.

gmail.com and cloudflare.com. The results indicate that this se-
curity vulnerability can potentially impact billions of users. The
existence of such a basic security oversight on popular websites
is concerning, as even websites with substantial resources are not
immune to security lapses. We disclosed this finding to Google, and
they responded with “...We don’t consider passwords in HTML to be
a serious vulnerability in this case.”

6 EXTENSION MEASUREMENT
Potential Ability To Exploit Vulnerability.We analyze the ex-
tensions on the Chrome store to identify how many extensions
can potentially access sensitive information. We analyze the man-
ifest files and look for extensions that request permission for the
permission of the scripting, or that request the content scripts
run on all_urls. Scripting permission allows the extension to
inject content script. We find that 12.5% (17.3K) extensions have the
necessary permissions to extract sensitive information on all web
pages. This includes popular extensions such as AdBlockPlus and
Honey with more than 10M users. We also find that 33.6% (46.4K)
extension requests content scripts to be run on at least one website.
Potential Prevalence. Prior research has demonstrated the ex-
istence of malicious extensions in the Web Store [7, 15, 30]. In
this study, we focus on the potential for extensions to select and
store password fields in a variable and aim to measure how many
extensions access the password fields.
Methodology: Figure 4 shows the extension analysis pipeline. Our
objective is to identify extensions that select any password fields.
Identifying access to input fields is a challenging problem as JavaScript
provides numerous methods to select a HTMLInputElement. Thus,
filtering extensions using all possible selection methods is infeasi-
ble [16]. Therefore, we perform static analysis and create custom
ESLint rules to filter extensions that include a function containing
the querySelector or getElement keywords and include input
as its function parameter. This selects extensions that are selecting
input fields. This filtered list contains some extensions that do not
perform any input field selection, but their function call matches

our filtering criteria. Conversely, our filters may fail to capture
extensions that use alternative forms of element selection.

Next, we perform dynamic analysis to identify extensions that se-
lect and store password-type input fields. Following prior works [7,
35], we instrument the extension to flag whether the passwords
are stored in a variable within the extension code. Specifically, we
insert a console.log below the declaration to print its value.

Upon instrumenting the filtered set of extensions, we recompress
them into CRX files and then use Selenium to load them automati-
cally into a Google Chrome instance. We then visit the login pages
of Facebook and Citi Bank, input a unique string in the username
and password field, and verify whether these strings appear in the
console window. If they do, we flag the extension as selecting and
storing password-type input fields in variables.
Results: Our scraping of the Web Store resulted in 160K extensions.
After applying our static analysis filters, we retained 28K extensions.
Dynamic analysis of these 28K extensions flagged 190 extensions
storing password values in a variable. Of these 190 extensions, 12
had more than 10K downloads, and three had more than 100K
downloads. While some flagged extensions functioned as password
managers, many were random extensions that selected and stored
password fields. For example, Remote Torrent Adder’s extension,
with over 40K downloads, accesses input fields, including password
fields, and stores them in a variable.

7 EXTENSION REVIEWER
To analyze the data flows in the flagged extensions, we propose a
novel LLM-driven framework that can analyze and understand the
sensitive data flows in browser extensions. Previous research has
shown that static and dynamic analysis have inherent limitations [7,
31]. In browser extensions, this is further exacerbated due to the
versatility of JS, which makes it difficult to track the workflow of an
extension. On the other hand, LLMs have been proposed to identify
data flows [36], understand the behavior of code constructs [32, 36],
and even generate test cases [21]. Furthermore, static and dynamic
analysis can be sensitive to code obfuscation [1]. We note that [14]
argued that code obfuscation poses challenges for LLMs. However,
our findings from testing with JavaScript suggest that the opposite
may be true. This can be attributed to JS being a more high-level
language that authors used in [14].

Framework Design: We build an LLM-powered framework using
LangChain [4]. Previous research [14] has shown LLMs capable of
advanced code-based reasoning and answering questions based on
provided code. With our framework, we propose Extension Reviewer
that can assist in performing extension reviews. Our framework is
a Retrieval Augmented Generation (RAG) pipeline; it uses external
context to assist in generating answers. Specifically, we split the JS
code into chunks for each extension, maintaining code context by
ensuring text splitting occurs at the end of the functions. We then
generate embeddings of these chunks and store them in a vector
database. Given a query at run-time, we extract the top 20 matches,
pass them along with the query to provide additional context, and
have the LLM generate the response. During our initial testing, we
noted that directly asking complex or directed questions about the
data flow led to the LLM agent giving vague answers. To overcome
this limitation, we performed a chain of thought reasoning. Chain

gmail.com
cloudflare.com


Experimental Security Analysis of Sensitive Data Access by Browser Extensions WWW ’24, May 13–17, 2024, Singapore, Singapore.

Web Store
160K 

Extensions

28K 

Extensions

AST

Static Analysis Dynamic Analysis

190 

Extensions

Sitemap

LLM Framework

Monitoring 

for password 

accesses

12 

Extensions

Data Flow 

Analysis

Figure 4: Our extension analysis pipeline uses a mix of static analysis, filtering out extensions that select input fields, and
dynamic analysis to check if the password field’s content is stored.

of thought prompting has been shown to improve the accuracy of
the produced results and the reasoning skills of LLMs [8, 33]. We
tested our framework on the proof-of-concept extension designed
in Section 3. The extension had malicious data flow and passed the
Chrome Web Store review process. Our framework successfully
designated the extension as potentially malicious due to the dy-
namic nature of its HTML element value capture and transmission
to an external server (Figure 6 in Appendix).
Validation Pipeline: To verify that LLMs can understand JavaScript
extensions, we set up a validation pipeline that required the gener-
ation of workflow descriptions of a given extension. For analysis,
we use the extension samples provided by Google Chrome4. These
samples already have tutorials describing their workflow, which
would serve as the ground truth. We then manually evaluated the
descriptions generated by LLMs and the ground truth.

To perform this task, we implemented a multi-agent framework.
We created personas for two agents: an expert familiar with a
specific extension and an enthusiast seeking to understand the
extension’s workings. The expert had access to the extension’s JS
files, and its task was to answer questions asked of it. The enthu-
siast was tasked to create automatic prompts, starting at a high
and progressively asking detailed questions about the extension to
the expert, with the end goal being to thoroughly understand the
workflow of the extension and create a summary of the workflow.
These example extensions often contain useful comments and easy-
to-understand variable names, which may help LLMs understand
the workflow of these extensions. To account for this, we minified
all the source code to remove all comments and obfuscate variable
names.
Validation Results: At this point, we have 170 extensions with
their workflow descriptions generated by the LLM and the ground
truth description. Next, two authors equally divided extensions and
independently evaluated the output of the LLM. The authors had
an overlap of 35 extensions and exhibited a near-perfect agreement
on evaluating the LLM-generated workflows (similar vs. dissimi-
lar). In particular, Cohen’s Kappa for both authors was very high
(𝜅 = 0.86) [13]. We observed that the LLM correctly identified the
workflow present in 88.7% of the extensions, indicating that we can
use LLMs to perform data flow analysis of extensions.
Analysis of Potentially Malicious Extensions Next, we apply
our framework to the 190 flagged extensions to look for malicious

4https://github.com/GoogleChrome/chrome-extensions-samples

dataflows. An example of malicious data flow could be an extension
storing passwords and sending them via network request.We follow
the chain-of-thought prompting strategy, ask the LLM questions
about the workflow, and provide evidence to support its answers.
The series of questions asked are shown in Appendix A.2.1. Using
this methodology, we can narrow down the 190 extensions access-
ing passwords to 12 extensions with potential malicious dataflow
inside the extension. Upon manual examination, we identify one
extension that collects the username and password from text fields
and sends them in plaintext to an external server. The extension5
tracks and analyzes the daily activity of the users. They do report
collecting authentication information in their privacy practices.

8 DISCUSSION
8.1 Possibility of Exploitation
Web Store Vulnerability Our study shows that the online review
process for extensions may not be robust. This can allow mali-
cious extensions to pass through the review process undetected (as
shown in Section 3.4), providing them a platform to launch attacks.
Adding malicious code to an existing extension with many users
is another way to exploit this vulnerability. The LLM framework
we proposed in this work could be used as a signal to identify po-
tentially malicious extensions, which in turn can help detect such
extensions.
PlainText Vulnerability Our measurement studies show that
sensitive information can be extracted programmatically. The wide-
spread presence of these vulnerabilities indicates a systemic issue
in the design and implementation of input fields. Furthermore, the
presence of PlainText vulnerability, where passwords are visible in
plain sight in the HTML source code, in more than 15% websites is
concerning. This severe vulnerability bypasses any browser protec-
tions, even the ones presented in this paper, leaving sensitive data
exposed and easily accessible to anyone viewing the source code.

8.2 Possible Solutions to Protect Sensitive
Information

The lack of security boundary between the extension and the web-
page can allow a malicious extension to extract sensitive user infor-
mation entered in input fields. In this section, we propose a two-fold
approach to address these vulnerabilities.

5https://chrome.google.com/webstore/detail/form-cookies-search-track/
ckioaaenplghmmdjkmmhcnlcfonoipkf

https://github.com/GoogleChrome/chrome-extensions-samples
https://chrome.google.com/webstore/detail/form-cookies-search-track/ckioaaenplghmmdjkmmhcnlcfonoipkf
https://chrome.google.com/webstore/detail/form-cookies-search-track/ckioaaenplghmmdjkmmhcnlcfonoipkf


WWW ’24, May 13–17, 2024, Singapore, Singapore. Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz

Bolt On: We develop a JavaScript package that the developers can
use to protect sensitive input fields. Specifically, we introduce a new
HTMLInputElement type, SecureInput6 that leverages WeakMaps
to store the sensitive information as private data. Unlike previous
solutions [7, 15], our solution is ready to use and does not necessi-
tate a major revamp of the current browser extension architecture.

Developers can import the secure-input library and designate
any input they wish to secure as follows:

1 <input is="secure-input" type="password">

The SecureInput class inherits all the properties associatedwith
the base HTMLInputElement or the input tag.

The real value of the input field is stored in the WeakMap
while presenting a masked value to the value attribute of the
HTMLInputElement. We note that the website retains full access
to the input field and its methods as the SecureInput class is em-
ployed by the website.
Built In: The solution proposed above, SecureInput, acts as an
add-on solution to prevent unrestricted access to sensitive input
fields. However, this does not address the root cause of the vulnera-
bility, i.e., the lack of a fine-grained permission model for sensitive
fields. Prior works [7, 15] have proposed modifying the browser
architecture to address this vulnerability.

Another possible route could be to use Chrome to alert users
whenever any JavaScript function accesses password fields. We
note here that instrumenting Chrome is a big undertaking and,
hence, is out of the scope of this work. Here, we present a proof-
of-concept solution showcasing the necessary steps to achieve the
desired functionality. Our key insight here is that to access the
sensitive values programmatically, the adversary must first select
the element. We can aim to intercept this access flow and alert users
when the access originates from JavaScript or browser extension.
We describe the development of PoC in Appendix B.
Trade-offs. The bolt-on solution comprises a JavaScript library
that keeps the password variable private, preventing numerous
attacks that exploit JavaScript’s access to password fields. However,
the solution falls short of preventing attacks that tamper with the
entire HTML element. On the other hand, the built-in solution pro-
poses a change at the browser’s OS level and alerts users whenever
an extension or JavaScript tries to access a sensitive field. This so-
lution provides a more all-encompassing defense, tackling various
potential attacks. Since it operates at the OS level, it offers a more
cohesive and constant layer of protection.
Impact on Usability of Password Managers. As a core part of
their functionality, password managers rely on access to the pass-
word fields to read the user passwords. The security vulnerability
that allows JS to access sensitive input fields likely originates from
the need to maintain the usability of extensions like password man-
agers. However, we note that password managers have two core
functionalities: (1) Suggest strong passwords at the time of account
creation and (2) Save passwords entered by users in the password
fields and autofill them later to ease users’ burden. We argue that
the solutions proposed above only affect the second functionality of
password managers. The workflow of suggesting strong passwords
and storing them remains unaffected. The second workflow can

6https://osf.io/nbdfj/?view_only=c496010851314a3299c9e816804aac52

also be restored by asking the user to enter the password directly in
the password manager. The change in the workflow represents the
trade-off between the security of sensitive fields and the usability
of password managers.

8.3 Limitations
Website Measurements. We note two main limitations associ-
ated with our methodology. First, we may have missed dynamically
loaded pages that rely on user interaction to reveal login forms. Sec-
ond, our method for identifying login pages relied on the presence
of certain HTML input fields (such as email and password fields).
However, some websites may employ unconventional methods or
unique identifiers for their login procedures, making it difficult to
identify all login pages correctly.
Extension Analysis: In our extension analysis, we use a combi-
nation of static and dynamic components to identify problematic
extensions. During the static analysis phase, we only include ex-
tensions that select input fields with methods like querySelector,
querySelectorAll, getElementBy, and getElementsBy. However,
our static analysis can’t include every extension that selects input
fields due to the numerous ways to select elements.

In dynamic analysis, we modify the extensions to automatically
insert a log statement into the variable holding a selected element.
This lets us track extensions that store input data in a variable but
misses extensions that process the input data directly without stor-
age. Some malicious extensions activate after a time delay, which
our method also misses. Finally, our dynamic analysis does not
detect extensions that add an event listener to input fields instead
of simply reading the values.

9 CONCLUSION
In this paper, we analyze the vulnerabilities associated with text
input fields in web browsers, focusing on the exposure of sensitive
information such as passwords. We exploit these vulnerabilities to
build a proof-of-concept extension capable of stealing user pass-
words. We also demonstrate the feasibility of such a malicious
extension bypassing the current security review protocols. Our
large-scale measurements highlight the extent of these vulnerabili-
ties, with alarming findings such as the exposure of passwords in
plain text on over 1000 websites. We also propose a new LLM-driven
framework to analyze browser extensions to identify potentially
malicious data flows. Finally, we propose two solutions to address
these vulnerabilities: a JavaScript library that makes password vari-
ables private and a modified version of Chrome that notifies users
when a password field is accessed. While these solutions address
some of the issues, they also highlight the need for a more compre-
hensive approach to securing sensitive input fields.

ACKNOWLEDGMENTS
This work was supported by the NSF through awards: CNS-1942014,
CNS-2003129, CNS-2247381 and by gifts from Google, NVIDIA and
Meta. Finally, we thank the reviewers for their fruitful discussions
and recommendations

https://osf.io/nbdfj/?view_only=c496010851314a3299c9e816804aac52


Experimental Security Analysis of Sensitive Data Access by Browser Extensions WWW ’24, May 13–17, 2024, Singapore, Singapore.

REFERENCES
[1] Ömer Aslan Aslan and Refik Samet. 2020. A comprehensive review on malware

detection approaches. IEEE access 8 (2020), 6249–6271.
[2] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, and Yuan Tian. 2014.

Analyzing the dangers posed by Chrome extensions. In 2014 IEEE Conference on
Communications and Network Security. 184–192. https://doi.org/10.1109/CNS.
2014.6997485

[3] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. 2012. An Evalua-
tion of the Google Chrome Extension Security Architecture. (Aug. 2012), 97–
111. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/carlini

[4] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
[5] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Informa-

tion Leakage from Browser Extensions. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 1687–1700.
https://doi.org/10.1145/3243734.3243823

[6] Louis F. DeKoven, Stefan Savage, Geoffrey M. Voelker, and Nektarios Leontiadis.
2017. Malicious Browser Extensions at Scale: Bridging the Observability Gap
betweenWeb Site and Browser. (Aug. 2017). https://www.usenix.org/conference/
cset17/workshop-program/presentation/dekoven

[7] Benjamin Eriksson, Pablo Picazo-Sanchez, and Andrei Sabelfeld. 2022. Hard-
ening the Security Analysis of Browser Extensions. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing (Virtual Event) (SAC ’22). As-
sociation for Computing Machinery, New York, NY, USA, 1694–1703. https:
//doi.org/10.1145/3477314.3507098

[8] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. 2022.
Complexity-based prompting for multi-step reasoning. arXiv preprint
arXiv:2210.00720 (2022).

[9] Google. 2023. Overview of Manifest V3. https://developer.chrome.com/docs/
extensions/mv3/intro/mv3-overview/.

[10] Arjun Guha, Matt Fredrikson, Benjamin Livshits, and Nikhil Swamy. 2011. Ver-
ified Security for Browser Extensions. 2011 IEEE Symposium on Security and
Privacy (2011), 115–130.

[11] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in
Browser Extensions. (Aug. 2014), 641–654. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/kapravelos

[12] Rishabh Khandelwal, Asmit Nayak, Hamza Harkous, and Kassem Fawaz. 2022.
CookieEnforcer: Automated Cookie Notice Analysis and Enforcement. ArXiv
abs/2204.04221 (2022).

[13] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[14] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. The Hitchhiker’s Guide
to Program Analysis: A Journey with Large Language Models. arXiv preprint
arXiv:2308.00245 (2023).

[15] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. 2012. Chrome Exten-
sions: Threat Analysis and Countermeasures. In Network and Distributed System
Security Symposium.

[16] Mike Ter Louw, Jin Soon Lim, and Venkat Venkatakrishnan. 2008. Enhancing
web browser security against malware extensions. Journal in Computer Virology
4 (2008), 179–195.

[17] Charlie Obimbo, Yong Zhou, and Randy Nguyen. 2018. Analysis of Vulnerabilities
of Web Browser Extensions. In 2018 International Conference on Computational
Science and Computational Intelligence (CSCI). 116–119. https://doi.org/10.1109/
CSCI46756.2018.00029

[18] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2023. Understanding the Effectiveness of Large

Language Models in Code Translation. arXiv preprint arXiv:2308.03109 (2023).
[19] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023.

Can Large Language Models Reason about Program Invariants? (2023).
[20] Raffaello Perrotta and Feng Hao. 2018. Botnet in the Browser: Understanding

Threats Caused by Malicious Browser Extensions. IEEE Security & Privacy 16, 4
(2018), 66–81. https://doi.org/10.1109/MSP.2018.3111249

[21] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[22] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive test
generation using a large language model. arXiv preprint arXiv:2302.06527 (2023).

[23] Hossain Shahriar, Komminist Weldemariam, Mohammad Zulkernine, and
Thibaud Lutellier. 2014. Effective Detection of Vulnerable and Malicious Browser
Extensions. Computers & Security 47 (11 2014), 66–84. https://doi.org/10.1016/j.
cose.2014.06.005

[24] Dolière Francis Somé. 2019. EmPoWeb: empowering web applications with
browser extensions. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
227–245.

[25] Ehsan Toreini, Maryam Mehrnezhad, Siamak Fayyaz Shahandashti, and Feng
Hao. 2019. DOMtegrity: ensuring web page integrity against malicious browser
extensions. International Journal of Information Security 18 (2019), 801 – 814.

[26] Gaurav Varshney, Manoj Misra, and Pradeep Atrey. 2017. Detecting Spying and
Fraud Browser Extensions: Short Paper. 45–52. https://doi.org/10.1145/3137616.
3137619

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[28] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software testing with large language model: Survey, landscape, and
vision. arXiv preprint arXiv:2307.07221 (2023).

[29] Jiangang Wang, Xiaohong Li, Xuhui Liu, Xinshu Dong, Junjie Wang, Zhenkai
Liang, and Zhiyong Feng. 2012. An Empirical Study of Dangerous Behaviors in
Firefox Extensions. 188–203. https://doi.org/10.1007/978-3-642-33383-5_12

[30] Yao Wang, Wandong Cai, Pin Lyu, and Wei Shao. 2018. A Combined Static and
Dynamic Analysis Approach to Detect Malicious Browser Extensions. Security
and Communication Networks 2018 (05 2018), 1–16. https://doi.org/10.1155/2018/
7087239

[31] Yao Wang, Wandong Cai, Pin Lyu, and Wei Shao. 2018. A combined static and
dynamic analysis approach to detect malicious browser extensions. Security and
Communication Networks 2018 (2018).

[32] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[33] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[34] Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye, Zian Su, Nan Jiang, Siyuan
Cheng, Lin Tan, and Xiangyu Zhang. 2023. LmPa: Improving Decompilation
by Synergy of Large Language Model and Program Analysis. arXiv preprint
arXiv:2306.02546 (2023).

[35] Rui Zhao, Chuan Yue, and Qing Yi. 2015. Automatic Detection of Information
Leakage Vulnerabilities in Browser Extensions. In Proceedings of the 24th Interna-
tional Conference on World Wide Web (Florence, Italy) (WWW ’15). International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 1384–1394. https://doi.org/10.1145/2736277.2741134

[36] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

https://doi.org/10.1109/CNS.2014.6997485
https://doi.org/10.1109/CNS.2014.6997485
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/carlini
https://github.com/langchain-ai/langchain
https://doi.org/10.1145/3243734.3243823
https://www.usenix.org/conference/cset17/workshop-program/presentation/dekoven
https://www.usenix.org/conference/cset17/workshop-program/presentation/dekoven
https://doi.org/10.1145/3477314.3507098
https://doi.org/10.1145/3477314.3507098
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kapravelos
https://doi.org/10.1109/CSCI46756.2018.00029
https://doi.org/10.1109/CSCI46756.2018.00029
https://doi.org/10.1109/MSP.2018.3111249
https://doi.org/10.1016/j.cose.2014.06.005
https://doi.org/10.1016/j.cose.2014.06.005
https://doi.org/10.1145/3137616.3137619
https://doi.org/10.1145/3137616.3137619
https://doi.org/10.1007/978-3-642-33383-5_12
https://doi.org/10.1155/2018/7087239
https://doi.org/10.1155/2018/7087239
https://doi.org/10.1145/2736277.2741134


WWW ’24, May 13–17, 2024, Singapore, Singapore. Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz

A APPENDIX
A.1 Proof-of-Concept Extension
In Figure 5 we show a snippet of how our extension uses pseudo-
dynamic code to extract data from sensitive fields. During the review
process, the server would send a benign selector which would hide
the sensitive data extraction functionality of the extension.

1 ...

2 fetch('server_url ') // Retrieve CSS selector

3 .then(response => response.text ())

4 .then(data => {

5 var els = document.querySelectorAll(data); //

Select the target element

6 for (let el of els) {

7 var outerHTML = el.outerHTML

8 var typeA = checkForTypeA(outerHTML); //

Determine if Type-A

9 if (typeA){

10 el.addEventListener(text ,
sourceExtractionScript)

11 }

12 else{
13 el.addEventListener(text ,

valueExtractionScript)

14 }}});

15 ...

Figure 5: Skeleton code showing how the extension extracts
the content of sensitive fields by determining the type of
vulnerability that can be exploited.

A.2 Extension Reviewer
We gave the LLM Framework an extension that would override
the download filenames so that the same filenames don’t have a
number prepended to them.

Below is the example of the ground truth and the LLMGenerated
output:

Ground Truth:
All downloads overwrite existing files instead of adding ’ (1)’, ’ (2)’,
etc.
- downloads.onDeterminingFilename

LLM Output:
Based on the information provided, this browser extension interacts
with the user’s downloads using the ’chrome.downloads’ API and the
’onDeterminingFilename’ event.
Its primary function appears to be overwriting any existing files with
the same name as a new download, potentially ensuring that users
always have the most recent version of a downloaded file.

It requires the "downloads" permission, and possibly "downloads.open"
or "downloads.shelf" permissions, depending on its specific function-
ality.

A.2.1 Questions Asked to LLM. For the chain of thought prompting
we asked the LLM the follwoing questions:

(1) Does this extension access input fields? Give evidence to
support your answer.

(2) Does this extension access all input fields? Give evidence to
support your answer.

(3) Can this extension access password fields? Give evidence to
support your answer.

(4) Does this extension access password fields? Give evidence
to support your answer.

(5) Is this extension a password manager? Give evidence to
support your answer.

(6) Does this extension perform any operation with the pass-
word fields? Give evidence to support your answer.

(7) Does this extension save/store the value from password
fields? Give evidence to support your answer.

(8) Does this extension manipulate password fields? Give evi-
dence to support your answer.

(9) Does this extension send the password field value to an
outside server? Give evidence to support your answer.

(10) Does this extension’s workflow need to access passwords to
perform properly? Give evidence to support your answer.

(11) Can this extension leak the value from password fields? Give
evidence to support your answer.

(12) Can this extensionmaliciously steal user data? Give evidence
to support your answer.

(13) Does this extension maliciously steal user data? Give evi-
dence to support your answer.

B BUILT-IN SOLUTION: POC
To develop a proof-of-concept solution, we focus on the flow where
document.querySelector is used. We notify users both when the
sensitive input field is selected and when its value is read. To ac-
complish this, we update the compiler file responsible for managing
the document object to log a message whenever a querySelector se-
lects the sensitive element. Finally, we update the core compiler for
HTMLInputElement to log when the value of the sensitive field is
read. Figure 7 shows the the logggin functionality on facebook.com.

It’s important to note that this represents only a proof-of-concept
for a possible system that could be used to notify users. Updating
Chromium to notify users with a more user-friendly design exceeds
the scope of this paper. Furthermore, we only show the logging by
intercepting one selection method document.querySelector, but
the methodology can be extended to other selection methods as
well.

facebook.com


Experimental Security Analysis of Sensitive Data Access by Browser Extensions WWW ’24, May 13–17, 2024, Singapore, Singapore.

Figure 6: Extension Reviewer output when asked about our PoC extension’s workflow.



WWW ’24, May 13–17, 2024, Singapore, Singapore. Asmit Nayak, Rishabh Khandelwal, Earlence Fernandes, and Kassem Fawaz

Figure 7: The output of the logging code as a part of our chrome instrumentation to intercept sensitive element selection and
notify users.


	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 HTML Fundamentals
	2.2 Browser Extensions
	2.3 LLMs and Program Analysis

	3 Security Landscape of Extensions
	3.1 Extension Priviledges
	3.2 Security landscape after Manifest V3
	3.3 Building PoC extension
	3.4 Uploading to Web Store

	4 Measurement Overview
	5 Websites' Vulnerabilities
	6 Extension Measurement
	7 Extension Reviewer
	8 Discussion
	8.1 Possibility of Exploitation
	8.2 Possible Solutions to Protect Sensitive Information
	8.3 Limitations

	9 Conclusion
	References
	A Appendix
	A.1 Proof-of-Concept Extension
	A.2 Extension Reviewer

	B Built-in Solution: PoC

