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Abstract—Trigger-action platforms (TAPs) allow users to con-
nect independent web-based or IoT services to achieve useful
automation. They provide a simple interface that helps end-
users create trigger-compute-action rules that pass data between
disparate Internet services. Unfortunately, TAPs introduce a
large-scale security risk: if they are compromised, attackers will
gain access to sensitive data for millions of users. To avoid
this risk, we propose eTAP, a privacy-enhancing trigger-action
platform that executes trigger-compute-action rules without ac-
cessing users’ private data in plaintext or learning anything about
the results of the computation. We use garbled circuits as a
primitive, and leverage the unique structure of trigger-compute-
action rules to make them practical. We formally state and prove
the security guarantees of our protocols. We prototyped eTAP,
which supports the most commonly used operations on popular
commercial TAPs like IFTTT and Zapier. Specifically, it supports
Boolean, arithmetic, and string operations on private trigger
data and can run 100% of the top-500 rules of IFTTT users
and 93.4% of all publicly-available rules on Zapier. Based on
ten existing rules that exercise a wide variety of operations, we
show that eTAP has a modest performance impact: on average
rule execution latency increases by 70 ms (55%) and throughput
reduces by 59%.

I. INTRODUCTION

Trigger-action platforms (TAPs), such as IFTTT [8], Za-
pier [11], and Microsoft Power Automate [4] are web-based
systems that enable users to stitch together their cyber-physical
and digital resources (e.g., IoT devices, GMail, Instagram,
Slack) to achieve useful automation. TAPs provide a simple
trigger-compute-action paradigm and an easy-to-use interface
to program automation rules.

For example, using their smartphone, a user can setup a
rule that checks if an email contains the word “confidential”
and, if so, sends an SMS with the subject line and the sender’s
address to a pre-specified number (Fig. 1). Instead of an SMS,
the rule could also blink a smart light whenever a matching
email arrives. To execute this rule on a TAP, when an email
arrives (trigger), the mail service (trigger service) sends the
email to the TAP that runs the string search (computation),
which then contacts an SMS gateway or a smart bulb service
(action service) with required information to perform the
action. We refer to the combination of trigger/action services
and the TAP as a trigger-action system — a key ingredient for
fulfilling the promise of the IoT [49]. They provide a layer of
abstraction that enables trigger and action services to develop
APIs independently without worrying about compatibility with
each other.

These benefits unfortunately come at the high price of
private data disclosure to the TAPs. Even the simple rule
discussed above reveals the user’s private emails to the TAP.
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Fig. 1: Overview of current trigger-action systems. The
dataflow for the example rule is illustrated in blue color: “IF
I receive an email containing the word ‘confidential’, THEN
blink my desktop smart light.”

As the TAP is the center of communication between triggers
and actions, it can launch person-in-the-middle attacks by
invisibly collecting private information on all of its users,
similar to what has already been happening on centralized
ride-hailing platforms [34], [47]. Due to the highly compatible
nature of TAPs, this data includes location, voice commands,
fitness data, pictures, files, etc. [38] and is limited only by the
variety of online services of users (e.g., IFTTT supports 600
services [37]). Commercial TAPs do not provide any technical
protections for user data. For example, IFTTT’s terms of
use explicitly state that they collect personal data from third
parties, and may pass it to other third parties, partners, or any
company that might acquire IFTTT [38].

Furthermore, because TAPs are widely-used centralized web
services (e.g., IFTTT has more than 20 million users [40]),
they are attractive targets for attackers. Breaches of cloud
services are commonplace [3], [60], [63], [72]. Attackers
sometimes even have continued access to the compromised
service for days, and even weeks before getting detected [25],
[26], [59]. A similar breach will have disastrous consequences
for TAP users. Such privacy risks might discourage users as
well as trigger/action services from using TAPs. Indeed GMail,
due to security and privacy concerns, pulled back some of its
APIs from IFTTT [61].

In this paper, we introduce eTAP, an encrypted trigger-
action platform that executes user rules without accessing
the underlying user data in plaintext. Thus, eTAP provides
confidentiality even when the attacker fully controls the TAP.
Although this problem fits in the general framework of secure
function evaluation (SFE) [74], [75], building a functional and
secure trigger-action platform with good performance requires
overcoming several challenges.

First, we desire confidentiality of user’s data and authen-
ticity of computation when the TAP is compromised and acts
maliciously. While there are protocols for SFE that provide



security even if some parties act maliciously [31], [48], these
constructions are not yet practical [48], [64]. Second, using
off-the-shelf protocols for SFE will require invasive changes
to the architecture of trigger-action systems that break the
independence between trigger and action services, making
them less useful. Third, running arbitrary computations on the
TAP using SFE will be inefficient.

We leverage the unique structure and threat model of
trigger-action systems to overcome these challenges. At a
high-level, we create a trusted generator of garbled circuits
(GCs). This allows eTAP to use semi-honest implementations
of SFE coupled with a few efficient extensions, which we
contribute with security proofs, to achieve security against a
fully malicious circuit evaluator.

In our setting, the user’s smartphone, a standard component
in TAP design, plays the role of a trusted circuit generator
that periodically generates and transmits garbled circuits to the
untrusted TAP. The trigger service garbles sensitive data when
it is available and calls the TAP, which then executes the circuit
and contacts the action service with the (garbled) results. The
action service performs security checks and then executes the
action. We assume that the user’s phone is fully trusted, while
TAP is malicious. An attacker interested in compromising a
large number of users is more likely to try compromising the
TAP than the user’s phone. To maintain the same level of
trust as current TAPs provide, we treat the trigger and action
services as semi-honest — they follow the protocol but can
be inquisitive — and they should not learn any new private
information that they do not learn in the current setting.

To overcome the challenge concerning the efficiency of
arbitrary computations, we perform an analysis of the types
of computations in popular commercial trigger-action plat-
forms. We show that the computations supported by TAPs
are stateless and use Boolean, arithmetic, or string operations.
Most GC libraries support Boolean and arithmetic operations
natively, but none support string operations out of the box. Ex-
isting work contributes oblivious deterministic finite automata
that can match regular expressions [51]. However, it does not
support substring extraction and replacements — a common
operation in trigger-action systems. We therefore introduce a
novel approach to efficiently encode a subset of fixed-length
string operations as Boolean circuits. We then use the standard
GC approach to evaluate them securely on the TAP. Our
approach also has the advantage of unifying all the formal
security properties of eTAP rather than having a separate set
of proofs for string operations. eTAP can compute 93.4% of
all rules published on Zapier that require computation and
100% of the 500 most-used rules on IFTTT. (Of course, eTAP
supports all rules that do not require any computation.)

We formally prove the security of eTAP in the presence
of a malicious TAP (Section A). We show that the malicious
TAP can execute user rules without learning the private data or
tampering with the result of computation. eTAP also provides
mutual secrecy between the trigger and action services.

eTAP is a clean-slate approach to building trigger-action
systems and lays a foundation for securing the data they

handle. However, it does require some changes to current
systems. First, the trigger/action services need to understand
our protocols. We provide simple shims that they can use to
upgrade their functionality while maintaining their indepen-
dence and RESTful nature. Second, the user’s client device
takes on a more prominent role because it generates garbled
circuits. As efficient circuits cannot be reused in general, the
client has to periodically generate and transmit these circuits to
the TAP. We estimate that this process has a modest impact: the
trusted client is expected to transfer 61.7 MB of data per day
for an average user. This is equivalent to the data consumed
by uploading a one-minute of Full-HD video.

The paper offers the following contributions:

• We design eTAP, the first trigger-action platform that can
execute trigger-compute-action rules (Boolean, arithmetic,
fixed-length string) without accessing the underlying trigger
data in plaintext.

• We outline ideal security expectations of a privacy-sensitive
trigger-action system, and formally prove that eTAP meets
those security properties.

• We implement and evaluate eTAP. It can support 93.4% of
function-dependent rules used in Zapier and 100% of the
500 most-used rules in IFTTT. We show that most functions
can be evaluated in the order of milliseconds with about 2x
computational cost. Code is available at https://github.com/
EarlMadSec/etap.

II. BACKGROUND

We discuss background information on trigger-action sys-
tems and the cryptographic primitives that we use.

A. Trigger-Action Systems

Trigger-action systems allow stitching together disparate
online services using a trigger-compute-action paradigm to
automate different tasks. There are three main components of
the system: trigger services (TSs), action services (ASs), and
a trigger-action platform (TAP). We also explicitly mention
another computing component: the user’s client device that
they use to interface with the trigger-action system. Fig. 1
shows the interactions between different components.

Trigger and action services are online services for IoT or
web apps. There are a plethora of such services such as Insta-
gram, Slack, GMail, Amazon Alexa, Samsung SmartThings,
and many others. These services rely on REST APIs to send
and receive data, and each service may support several APIs
to provide different functionalities. They typically support the
OAuth protocol [58], which is used to delegate authorization.
With OAuth tokens, a third party, such as a TAP, can access
APIs and execute trigger-compute-action rules.

Commercial TAPs are compatible with hundreds of trigger
and action services, allowing each trigger or action service
to focus on building their own REST APIs without worrying
about compatibility with each other. Third-parties own a large
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majority of these services that integrate with IFTTT (e.g., LG,
Samsung, Google).1

Additionally, modern TAPs also allow performing non-
trivial computation over the trigger data. The ability to modify
the trigger data provides great flexibility for TAPs to achieve
compatibility between trigger and action services (e.g., two
calendar apps that use different date formats). The TAP also
uses operations to decide whether or not it should send a
message to the action service (e.g., does the email contain
the word “confidential”). TAPs serve as a computation and
communication hub. Zapier has explicitly supported com-
putation on trigger data from the very beginning [6], [7].
IFTTT has recently started to expose its computing interface
to end-users [39]. Thus, trigger-action systems are evolving to
be trigger-compute-action systems. We use these two terms
interchangeably throughout the paper.

Users interface with trigger-action system through a client
device, typically a smartphone. The user programs rules by
selecting a trigger service, then specifying a computation on
that data using a library of functions, and finally selecting an
action to be run on the action service. As noted before, the
user also authorizes the TAP to access their online services
using the client device.

Privacy and authenticity risks in current TAPs. Commer-
cial TAPs operate on sensitive trigger data of millions of users,
making them an attractive target for attackers. If the TAP is
compromised, the attacker gains the privilege of the TAP —
unfettered access to user data and resources. The types of data
are limited only by the set of rules that users create and the
end-point services that the TAP supports. Commercial systems
like IFTTT support approximately 600 services currently [37].
The sensitive information from these services can be emails
(our earlier example), data files, health information, voice
commands, images, etc.

Fernandes et al. [30] first noted this problem with TAPs, and
discussed a more appropriate threat model where TAP can act
maliciously. Under this model, they addressed a sub-problem:
preventing a compromised TAP from misusing overprivileged
OAuth tokens. Their work adds integrity to the rules, but it
does not allow any computation over the trigger data.

By contrast, we target modern TAPs that allow computa-
tion over the trigger data. Beyond integrity, we also aim to
protect the privacy of that data. Our work provides a way
for TAPs to compute on sensitive data without seeing the
plaintext, despite arbitrarily deviating from the protocol. We
believe such privacy risks might be preventing trigger-action
systems from achieving their true potential. Furthermore, we
provide computational integrity as well, thus subsuming prior
work [30].

B. Cryptographic Primitives

Symmetric-key encryption scheme. Let E = (K,E,D) be
a semantically secure encryption scheme. The key generation

1As of Aug 2020, 417 out of 522 services on IFTTT are third-party that
require a user to login and authorize access to IFTTT.

function K(1κ) generates a κ-bit uniformly random key k;
the randomized encryption scheme E takes a message x ∈ X
and the generated key k as input and outputs a cipher text
ct←$ E(k, x); and the deterministic decryption function takes
a cipher text and the key k as input and outputs a message,
x← D(k, ct), or ⊥ (if decryption fails).

We use an authenticated encryption scheme [18] that
achieves the IND-CCA security guarantee. This ensures both
the privacy and authenticity of plaintext.

Garbled circuits (GCs). This is a cryptographic technique for
secure function evaluation (SFE) [18], [76]. Following Bellare
et al.’s [17] notations, a garbling scheme G is a tuple of four
functions G = (Gb,En,De,Ev). Let f : {0, 1}n → {0, 1}m
denote the function to be evaluated securely. Here, Gb is a
randomized garbling function that converts the function f
(represented as a Boolean circuit) into a garbled circuit F .
It also outputs encoding and decoding information e and d
needed for encoding inputs and decoding the outputs. As such,
(F, e, d)←$ Gb(1κ, f), where κ is the security parameter. The
encoding function (En) encodes an input x ∈ {0, 1}n using
the encoding information e, which is the set of labels corre-
sponding to the value of each bit in x; X ← En(e, x). The
evaluation function (Ev) enables evaluation of the garbled
circuit F over the garbled input X to generate the garbled
output Y ← Ev(F,X), which is the set of labels correspond-
ing to the output wires. Finally, the decoding function (De)
decodes the output of the evaluation y ← De(d, Y ).

Garbling involves generating two random labels Lw1 and Lw0
for each of its wires, representing the true and false value for
the wire w. A number of optimizations have been proposed to
reduce the size of a garbled circuit. One of them is the free
XOR technique [43], which requires all wire labels to follow
the form Lw1 = Lw0 ⊕er, where er is a string randomly chosen
by Gb. This allows XOR gates in the circuit to be computed
with only the input wire labels.

Typically, GCs are used for 2-party secure function compu-
tations where two parties with their respective private inputs
x1 and x2 run the protocol such that, no party learns more
than f(x1, x2) for a public function f . The protocol works
as follows. First, one of the parties, called the generator, uses
the garbling function to generate (F, e, d)←$ Gb(1κ, f). Next,
it encodes its input as X1 ← En(x1, e). The other party,
called the evaluator, receives F and X1 and also retrieves
X2 ← En(e, x2) — encoding of its private input x2 — using
an oblivious transfer (OT) [62] protocol with the generator.
Following this, the evaluator runs the garbled circuit to obtain
Y ← Ev(F, (X1, X2)). Finally, either party can decode Y to
obtain the final output y ← De(d, Y ).

A secure garbling scheme provides the following security
properties [17]: (a) Message obliviousness. Given (F,X), an
adversary learns nothing about x or y (beyond what is known
from f ). (b) Input privacy. Given (F,X, d), an adversary
learns nothing about x beyond what is known from y and f .
(c) Execution authenticity. Given a garbled input X , it is hard
to find Y ′ such that Y ′ 6= Ev(F,X) and De(d, Y ′) 6= ⊥.
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Fig. 2: Breakdown of triggers, rules, and installed rules in
IFTTT based on their sensitivity levels.

We use these cryptographic primitives to design eTAP.
In Section III, we analyze existing TAPs to understand what
functions eTAP must support. We give the detailed protocol
in Section V, with its security proven in Appendix A.

III. ANALYSIS OF CURRENT TRIGGER-ACTION SYSTEMS

We analyze two popular commercial TAPs, IFTTT [8] and
Zapier [11] with the following goals in mind: (1) understand
the sensitive data that TAPs compute on; (2) establish that
although TAPs offer a variety of operations on data, they are
not arbitrary and will fit well in a garbled circuit framework;
and (3) derive an abstract TAP computational model that will
help ensure our system supports realistic functionality.

Types of sensitive information. The current trigger-action
system design gives the cloud-based TAP complete access
to trigger data. To better characterize the types of sensitive
trigger data accessible to TAPs, we analyzed the IFTTT dataset
mentioned in [50], by mapping each of its 320,000 IFTTT
rules to one of the three trigger sensitivity levels defined by
Bastys et al. [15] — public, private, and time-sensitive. Private
triggers contain information like emails and calendar events,
whereas public triggers contain information like news and
weather reports. The time-sensitivity level means that private
information exists in the availability of the trigger message.
For example, considering the rule “IF I leave home, THEN
turn off the WiFi,” the TAP will learn whether the user leaves
home depending on whether it receives a message from the
trigger service. Fig. 2 shows a breakdown of sensitive trigger
data according to how frequently they are used.

We observe that although a significant percentage (15%)
of triggers and action APIs supported by IFTTT are time-
sensitive, in reality, they are rarely used — only 0.8% of all
available rules in IFTTT (or 0.9% of all installed rules) use
a time-sensitive trigger. We also observe that, although there
are fewer private triggers than public ones, private triggers are
most frequently used — 61% of all installed rules contain a
private trigger API. These APIs return private information like
emails, messages, location traces, photos, sensitive files, med-
ication lists, health information, etc. Thus, we design eTAP
to protect the vast majority of private trigger information that
people actually use in real-world rules. We do not currently
provide confidentiality for time-sensitive information, but we
outline possible approaches using standard techniques like
cover traffic in Section VIII.

Operations on trigger data. IFTTT allows users to ex-
press computation on trigger data using filter code — small

Type Operation Description

Bool
x | a x OR y
x & a x AND y
! x NOT x

Num

x < n Is x less than n?
x > n Is x greater than n?
x.mathop(n) Basic math ops. (+,−,×,÷)
x.format() Format x into a string

Str

x == s Does x exactly match the string s
x.contain(s) Does x contain the string s
x.startwith(s) Does x start with the string s
x.endwith(s) Does x end with the string s
x.split(d, i) Split x using delimiter string d and select the

i-th substring
x.replace(s, t) Replace all occurrences of s in x with t
x.to_lowercase() Convert all characters in x to lowercase
x.truncate(n) Truncate x to size n
x.extract_phone() Extract the first phone number found in x
x.extract_email() Extract the first email address found in x
x.strip_html() Remove all HTML tags in x
x.html2markdown() Convert all HTML tags in x to Markdown
m.lookup(x) Look up the value for the key x in a user-

provided map m

Any x == null Does x exist?
x.default(y) Set value of x to y if it does not exist

Fig. 3: Operations used in top 500 IFTTT rules with private
triggers and all Zapier’s function-dependent rules.

snippets of TypeScript with some restrictions (e.g., no I/O
operations) [5]. Zapier rules contain two components: filters
that compute a predicate on the trigger data, and formatters
that modify the trigger data. Multiple filters and formatters can
be chained together.

To understand the common operations in IFTTT, we again
used the dataset of Mi et al. [50]. We selected the 500
most popular rules (based on user installation count) that are
connected to private trigger APIs. Unfortunately, a challenge
is that filter codes for IFTTT rules are not public. We therefore
manually approximated the filter code for these rules by (1)
estimating the functionality of each rule based on their title and
description, (2) examining the corresponding trigger/action
APIs, and (3) deducing the operations that are required to
convert trigger fields to action fields.

We also crawled the Zapier website for one day in October
2019 and collected all the publicly available rules that require
computations on trigger data [6], [7]. We collected a total of
378 rules and extracted the operations used in those rules.

The operations we found in IFTTT and Zapier are shown
in Fig. 3. Current garbled circuit libraries support a majority
of these operations natively. The main challenge is string
operations, for which we contribute a novel technique to
convert deterministic finite automata into Boolean circuits
(Section V-E).

Execution model of trigger-action systems. Based on our
survey of IFTTT and Zapier, we derive an abstract model of
these trigger-compute-action rules. During rule setup on the
client, the user typically specifies two functions — a predicate
f1, and a transformation f2. These functions take the trigger
data and some additional user-provided constants as input. The
predicate function f1 tests the trigger data for a condition to
determine whether TAP should contact AS. The output of f1
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is either true or false. The transformation function f2 modifies
the trigger data before sending the result to AS. Both f1 and
f2 run inside the cloud-based TAP.

Let x ∈ X be the part of the trigger data on which TAP
performs some computation, and y ∈ Y be the action data
TAP sends to AS, where X and Y are the domains of the
trigger and action data, respectively. Both x and y can be data
structures that contain multiple fields. We find that TAPs do
not modify some fields of trigger data such as large media
files, but only forward them to AS. We denote such trigger
data as payload v. Let c1, c2 ∈ C be the two user-provided
constants for the functions f1 and f2, where C is the domain
of the constants. On receiving (x, v) from TS, TAP executes

“if f1(x, c1) = true, then send (f2(x, c2), v) to AS”

For simplicity, we assume the domains of f1 and f2 to be the
same. So, f1 : X × C → {true, false}, and f2 : X × C → Y .

TAPs operate in two modes: (1) polling mode, where TAP
contacts TS at a predefined frequency; (2) push mode, where
TS sends a message to TAP when an event occurs. While our
protocol will work with both models, we assume the push
model in this paper as it is more efficient in general.

Example rule. We show how our abstract model can in-
stantiate our previous example rule: “IF I receive an email
containing the word ‘confidential’, then send me an SMS.”
The SMS should contain the address of the sender and the
email’s subject. Assume that TAP provides an operation to
search over strings, called contain. The user sets up a rule
by choosing its email provider as the trigger service, that sends
a copy of every new email to TAP. The action service is an
SMS provider that sends SMS to a user-provided number. The
user then specifies the contain function to check for the
string c1 =“confidential” on the email’s subject line, x. The
transformation function f2 creates the required data structure
to send the SMS, for example, setting the recipient address as
the user-provided phone number c2 and the message body as
the concatenation of the sender’s address and the subject.

IV. DESIGN CONSIDERATIONS FOR PROVIDING DATA
CONFIDENTIALITY IN TRIGGER-ACTION SYSTEMS

Our goal is to protect the confidentiality of private data
involved in trigger-action rules even if they are run on a
malicious cloud-based TAP. In this section, we discuss our
threat model, define our security and functionality goals, and
explore the design space.

A. Threat Model and Functionality Goals

Fernandes et al. [30] first noted the security and privacy
issues of a compromised TAP and the related attacker motiva-
tions. We adopt the same attacker model — TAP is malicious.
Specifically, the attacker: (1) can monitor communications
between TAP and the trigger/action services; (2) can arbitrarily
deviate from the communication protocol by manipulating,
delaying, or dropping the messages; (3) can modify TAP’s
internal storage and code that includes manipulating and
deleting garbled circuits; (4) knows API details of trigger

and action services; and (5) knows the functions that are
being evaluated on TAP. As we use cryptographic techniques
for our security guarantees, we assume that the attacker is
computationally bounded.

We assume that the end-point services (trigger and action
services) like Samsung SmartThings, Google Calendar, etc.
are semi-honest — they will follow the protocol as specified,
but try to glean more information than what they are entitled
to know. This is in line with the trust model used by current
TAPs. Also, if they are compromised, then the attacker can
achieve its goals of accessing and manipulating user data
independently of the trigger-action system. We also assume
that TAP is not colluding with TS or AS. As discussed
in Section II, third-parties own a large majority of trigger
and action services and thus collusion with TAP is unlikely
(for example, there is no incentive for LG or Google to
collude with IFTTT to reduce the security of their users).
Enforcement of the non-collusion condition can also be done
via legal affidavits [32], [65] or techniques that involve using
a trusted mediator who monitors the communications between
the parties [12], [13].

Finally, we assume that the user trusts their client device.
We observe that the attacker is motivated to compromise TAP
because it will simultaneously be able to attack all users of
the platform. An attack on the client device is not scalable to
all users easily, and therefore, is less attractive.

Security goals. Under this threat model, we want two security
properties for a trigger-action system:
Privacy: Each party should not learn other parties’ data in
a trigger-action rule. Specifically, TAP should not learn the
trigger data (x, v), user-provided constants (c1, c2), and results
of the computation (beyond what they already know from the
definitions of the functions); the trigger service (TS) should not
learn the user-provided constants (c1, c2); the action service
(AS) should not learn the trigger data x or user-provided
constants (c1, c2) beyond what is revealed to it after rule
execution. Additionally, AS should not learn the output of
transformation function f2 or payload v when the predicate
function f1 evaluates to false.
Integrity: The attacker should not be able to modify any
computations on private trigger data without being detected
by AS. That is to say, TAP should not be able to trick AS into
acting on illegitimate action data, such as delayed, replayed, or
tampered messages that are not the result of proper evaluation
of the rule. AS only accepts valid messages y = f2(x, c2),
where x is sent by TS within the last τ seconds (a configurable
parameter).

Security non-goals. Denial of service is outside our scope.
A compromised TAP can indeed drop all messages it receives
from TS and not transmit any message to AS. Metadata and
side-channel attacks are also outside our scope. For example,
even if messages are encrypted, the compromised TAP can
observe the timing of messages that arrive from a trigger
service or go to an action service. Coupled with semantic
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knowledge about the services, this might enable the attacker
to determine the sensitive data in the rule even if it is
encrypted. As discussed in Section III, this involves time-
sensitive rules which are less used frequently in practice. eTAP
protects the vast majority of sensitive trigger data for which
encryption achieves strong security properties. Section VIII
outlines standard approaches to protect metadata that we leave
as future work.

Functionality goals. We want to achieve the security goals
while respecting the following functionality goals: (1) RESTful
API for end-point services. The end services should be able
to design their APIs independently of each other, as they
do currently. These APIs should be RESTful, have minimal
computational overhead beyond running the API itself, and
do not need to store data or state specific to different trigger-
action rules. (2) Maintain trigger-compute-action paradigm.
The design should run existing user-created rules without any
changes and should maintain the key architectural aspects
of current trigger-action systems. Notably, the rules should
execute without requiring the client device to be online.

B. Design Space Exploration

We explore a few potential solutions occupying different
points in the design space and discuss why they do not meet
our functionality or security requirements.

Computation at the edges. The trigger service can run a
user-supplied function over its private data, encrypt the result,
and forward that to TAP. However, the trigger service has to
support an execution infrastructure similar to AWS Lambda,
significantly increasing the complexity and overhead of such
services and exposing them to additional security risk due
to executing third-party code. Furthermore, sensitive data in
user-supplied constants (c1, c2) will be exposed in plaintext to
the trigger service. For example, consider rule R7 from Fig. 9,
which converts Slack mentions to Asana tasks (a project
management tool). It requires users to provide a lookup table
of project names. These are sensitive information that should
not be revealed to Slack. Computation can also be moved to
the action service, but the same issues exist there as well.

Secure hardware. It is possible to use hardware-based trusted
execution environments (TEEs) or hardware security mod-
ules (HSMs) for computing the trigger data on TAP, while
preserving confidentiality [66], [78]. Yet besides requiring
hardware changes to the TAP servers, current TEEs suffer from
fundamental security design issues [23], [54], [69].

Homomorphic encryption of the trigger data. During rule
setup, the client can specify a symmetric key between the
trigger and action service. The trigger service encrypts its data
using this key before sending it to TAP. This will provide
trigger data confidentiality and allow the TAP to compute
directly on the encrypted data. However, only specialized
schemes like linear homomorphic encryption and “somewhat”
homomorphic encryption are practical [55], thus limiting ex-
pressivity. For reference, TFHE [10], a state-of-the-art library

for fully homomorphic encryption, takes 4.45 seconds to
compute an addition circuit, which is 3 orders of magnitude
slower than our system as evaluated in Section VI. Addi-
tionally, protection against a malicious TAP would require
zero-knowledge proofs [33] of computation that would further
reduce efficiency.

Off-the-shelf secure multi-party computation. Secure
multi-party computation (SMC) protocols allow multiple dis-
trusting parties to compute a function over their private in-
puts [74]. However, efficient off-the-shelf SMC protocols do
not fit our threat model — TAP is malicious, or architectural
requirements — needing TC, TS, AS, and TAP to participate
in a multi-round protocol during rule execution. Therefore,
we adopt a core primitive of SMCs — garbled circuits — and
modify it to our setting.

Secret sharing based SMC. Secret sharing is an alternative
to garbled circuits for doing SMC. However, secret sharing-
based protocols require intensive multi-round communication
(e.g., for evaluating multiplication gates). Additionally, in such
protocols every party has to do an equal amount of work,
which will require invasive architectural changes to TS and
AS. This violates our functionality goal. Finally, the malicious
versions of these protocols are not efficient.

V. DESIGN OF ENCRYPTED TRIGGER-ACTION PLATFORM

In this section, we discuss eTAP’s core protocols and
analyze how we specialize garbled circuits to trigger-action
systems. A high-level overview of eTAP is shown in Fig. 4,
and the pseudocode is given in Fig. 5. Like a typical trigger-
action system in Fig. 1, eTAP has four components: trusted
client’s device (TC), trigger service (TS), action service (AS),
and a trigger-action platform (TAP). We describe below how
our design modifies these four components while maintaining
the trigger-compute-action paradigm.

Decentralized trust model. In the current trigger-action
system design, users place all trust within a centralized cloud-
based TAP. This design leaves open a large-scale security and
privacy risk — a single compromise of the TAP will simultane-
ously compromise all users. To avoid this issue, eTAP borrows
a design element from DTAP [30] and designates the user’s
client device (smartphone) as the root of trust. Each user only
trusts their own smartphone and uses it to program trigger-
compute-action rules. As the eTAP protocols are open-source,
we envision a community of developers building client apps,
much like we have apps for open protocols like SFTP, Telnet,
etc. Thus, the eTAP cloud component and the client app are
built and controlled by different entities. Therefore, the client
app can still be trusted, even when the TAP is compromised.
eTAP bootstraps its guarantees on top of this model. In eTAP,
the trusted client (TC) is beyond just an interface — it stores
some state (as we describe below) that is key to its operation.

A. Rule Setup (occurs on trusted client)

Like in existing trigger action systems, the user can config-
ure a trigger-compute-action rule on the trusted client app (TC)
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Fig. 4: Overview of eTAP.

using its click-through interface. The user selects a trigger in
a trigger service (TS), a predicate f1, a data transformation
over the trigger data f2, and an action in an action service
(AS). The user also specifies any constants c if required.

TC sends the rule descriptions to TAP and helps the TAP
negotiate OAuth tokens with TS/AS required for running the
rule. In eTAP, unlike existing TAPs, TC shares with TS and
AS two uniformly-generated secret keys kT and kA, upon
successful authorizations. The key kT and kA are tied to the
specific trigger and action API for this user in TS and AS2. If
a prior rule has already been set up with the same trigger or
action API, then the corresponding OAuth authorization can
be skipped and TC will reuse the previously generated kT or
kA. Once the rule is setup, TS and AS store the shared key
materials; TAP stores the OAuth tokens; and TC stores the rule
(f1, f2), the keys (kT ,kA), and the constants (c1, c2) provided
by the user for the rule.

B. Circuit Garbling (periodic, occurs on trusted client)

Once the user creates a new rule, TC has to generate garbled
circuit to enable secure evaluation of the functions on the
(untrusted) TAP. TC generates garbled circuits corresponding
to f1 and f2 and the associated encoding/decoding blobs. It
uses the encoding blob to obtain the garbled labels for user-
supplied constants. The decoding blob allows AS to decode
the garbled outputs and to decrypt the payload. To ensure
TAP does not learn or tamper with the decoding blob, TC
encrypts it using kA. TC sends the garbled circuits, encoded
constants, and encrypted decoding blob to TAP. TC identifies
each instance of the garbled circuit using a monotonically
increasing counter j. The circuit id j is initialized to zero if
this is the first rule where the user uses the connected trigger
API; otherwise, TC queries TAP for the circuit id that the
connected trigger API is currently using. As garbled circuits
cannot be reused, TC periodically repeats the above process.

2For better usability, current TAPs only acquire one OAuth token per service
that can access all APIs in it [30]. eTAP can adapt to this model by exchanging
a service-level key kTS,kAS, and derive the API-level keys kT ,kA from the
hash value of kTS,kAS and API URL, as required.

CktGarbling((f, c), (kT ,kA, j)):
es ← H(kT ‖j‖0)
er ← H(kT ‖j‖1) ∨ 0κ−11
kv ← H(kT ‖j‖2)
e← (es, er)
(F,Lw0

0 , . . . , Lwm
0 )← Gb′(e, f)

d′ ← (lsb(Lw1
0 ), . . . , lsb(Lwm

0 ))
h← H(Lw1

0 ‖ . . . ‖L
wm
0 )

s̃←$ E(Lw0
1 ⊕kA, (j, kv , er, d′, h))

h̃← HMACkA
(j‖Lw0

0 )

d̃← (s̃, h̃)
C ← En(e, c)
Set j = j + 1
Return j, F, C, d̃

TSExec((x, v), (kT , j)):
es ← H(kT ‖j‖0)
er ← H(kT ‖j‖1) ∨ 0κ−11
kv ← H(kT ‖j‖2)
X ← En ((es, er), x)
t← CurrentTime()
ct←$ E(kv , (t, v))
Set j = j + 1
Return j,X, ct

TAPExec
(
(j,X, ct), (F,C, d̃)

)
:

Y ← Ev(F, (X,C))
Return j, Y, ct, d̃

ASExec
(
(j, Y, ct, d̃),kA

)
:

Parse Y as (Lw0 , . . . , Lwm )
(s̃, h̃)← d̃
z ← D(Lw0 ⊕ kA, s̃)
If z = ⊥ then

h̃′ ← HMACkA
(j‖Lw0 )

If h̃′ 6= h̃ then Return ⊥
Else Return false

(j′, kv , er, d′, h)← z
If j 6= j′ then Return ⊥
y ← De (d′, (Lw1 , . . . , Lwm ))
g ← ⊥
For i← 1 to m do

If yi = 0 then g ← g ‖Lwi

Else g ← g ‖ (Lwi ⊕ er)
h′ ← H(g)
(t, v)← D(kv , ct)
t′ ← CurrentTime()
If t′ > t+ τ or h 6= h′ then

Return ⊥
Return y, v

Fig. 5: Circuit generation and rule execution protocols for
eTAP. Lw0

1 denotes the true label for the first output wire w0,
Lw0
1 = Lw0

0 ⊕er; τ is a threshold parameter used to ensure the
freshness of a trigger. CktGarbling is run by TC asynchronous
to the actual rule execution. The remaining three functions are
run by TS, TAP, and AS during rule execution.

Although TC needs to transmit the garbled circuits and
related information prior to rule execution (Fig. 4), we design
eTAP such that TC does not need to be online during
execution. TC generates and transmits GCs in batches at times
when the smartphone is not being used (e.g., when charging at
night). Our evaluation (Section VI-B) demonstrates that trans-
mitting sufficiently many garbled circuits for a day generally
takes less bandwidth than backing up a 1-minute Full HD
video to a cloud drive. This achieves our design principle of
keeping the client device offline during rule execution.

Note that in our setting, the generator of the garbled circuit
is the smartphone client — a trusted entity. This is a key
insight and design element that is possible due to the nature
of our setting. This allows eTAP to use efficient semi-honest
implementations of garbled circuits and achieve security in the
presence of a malicious TAP.
Cryptographic Details. Without loss of generality, we as-
sume f1 : {0, 1}n × {0, 1}n → {0, 1} and f2 : {0, 1}n ×
{0, 1}n → {0, 1}m. For notational simplicity, we denote
f : {0, 1}n × {0, 1}2n → {0, 1}m+1, such that f(x, c) =
f1(x, c1)‖f2(x, c2), c = (c1, c2) ∈ {0, 1}2n. Additionally,
let H : {0, 1}∗ → {0, 1}κ denote a cryptographic hash
function. The pseudocode of the circuit garbling is given by
the CktGarbling function in Fig. 5.
Encoding blob. The encoding blob contains the information
required to encode the trigger data and encrypt the trigger
payload. It can be derived from the key kT and the garbled cir-
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cuit id j. TC generates three bitstrings (es, er, kv) ∈ {0, 1}3κ,
using the hash of kT ‖ j. The false labels of the input wires
(as described below) are generated using a H with es as
the random seed, and er is used as a global offset for the
standard free-XOR optimization [43]. The least significant bit
of er is set to 1 to enable the standard point-and-permute
optimization [16], [77]. Thus e = (es, er) constitutes the
encoding information used for the garbling scheme’s encoding
function (En). The key kv is used to protect the payload data v.
Garbled circuit. To generate the garbled circuit F for func-
tion f , the labels for every input wire w are computed as
Lw0 = H(es‖w) and Lw1 = Lw0 ⊕ er (assuming wire index
w is a fixed-length bitstring). The rest of the computation
(generating labels of the non-input wires and garbling gates)
proceeds as per standard techniques with optimizations, such
as row-reduction [56] or half-gate [77].
Encrypted decoding blob. The decoding blob consists of
information necessary for AS to decode the labels of output
wires (that correspond to the action data y) and to decrypt
the payload. Let the output wires be (w0, w1, . . . , wm), where
w0 corresponds to the output wire of f1, and the remain-
ing m wires correspond to those of f2. Following standard
practice [16], the decoding information d contains the least
significant bits (lsb) of the false label of each output wire
(lsb(Lw0

0 ), . . . , lsb(Lwm
0 )). In eTAP, decoding information is

slightly modified. First, the first bit, lsb(Lw0
0 ), of d is dropped

to create d′. Second, the hash of all the false labels of f2’s
output wires h ← H(Lw1

0 ‖ . . . ‖L
wm
0 ) is computed. Third, a

decoding blob is created using d′, h, the payload key kv , the
XOR offset er, and the current circuit id j. Next, the whole
blob is encrypted using a symmetric-key encryption scheme
E with a key derived from both kA (the secret key shared
with AS) and Lw0

1 (the true label of f1’s output wire w0)
to obtain s̃←$ E(Lw0

1 ⊕kA, (j, kv, er, d
′, h)). Additionally, an

HMAC [45] of the false label of predicate f1 is computed
using kA as h̃ ← HMACkA

(j‖Lw0
0 ). We use d̃ to denote the

tuple (s̃, h̃). We explain the rationale behind these changes
in Section V-D.
Encoded user constants. Using the encoding information e,
TC computes the labels for constants c as C ← En(e, c).

To accommodate the above customization, we derandomize
the garbling function Gb to Gb′ that takes an encoding
information e as an input and returns the garbled circuit F ,
as well as the false labels of every output wire. TC sends
(j, F, C, d̃) to TAP and increments the circuit id j by 1.

C. Rule Execution (occurs on TAP; does not involve TC)

When new trigger data is available for a trigger API, TS
will garble the input data and encrypt any payload data,
using the encoding blob it computes from kT and circuit id
j (which is initialized to 0 when the API is first called). It
then transmits the ciphertexts to TAP, which will lookup any
rules that are connected to the trigger API (and user) and
run the associated garbled circuits. TAP finally transmits the
output of the evaluation (garbled action data) and the encrypted

decoding blob to the corresponding API in AS, which can
decode to the plaintext result using kA (Fig. 4).

TS and AS only perform simple encoding and decoding
of data — fixed functionality independent of the trigger-
action rule semantics, thus maintaining their RESTful nature.
We believe that TS and AS are well-motivated to support
these additional operations, in exchange for enhanced security.
Indeed, current end-point services are concerned about the
privacy of user data. For example, GMail recently removed
their IFTTT triggers citing security and privacy concerns [61].

In our setting, the full evaluation of the garbled circuit
is split between the untrusted TAP that executes the circuit
to produce garbled output labels and the semi-honest AS
that decodes the plaintext result from the labels. This, in
combination with the trusted generator, allows eTAP to ef-
ficiently achieve the execution authenticity property of GCs
using a hash function (Section V-D), even when TAP itself is
malicious. We omit the standard OAuth steps that occur during
execution, which the reader can refer to [9] for details.

Cryptographic Details. TS’s operations in the rule execution
phase is function TSExec in Fig. 5. TS recomputes the encod-
ing information e = (es, er) and the payload key kv from kT

and j. It then encodes the trigger data x using the garbling
scheme’s encoding function, producing X ← En(e, x), and
encrypts the payload v under a symmetric-key encryption
scheme with the key kv to compute ct←$ E(kv, (t, v)) where
t is the current timestamp. Finally, TS forwards the message
(j,X, ct) to TAP and increments j by 1.

Upon receiving a trigger message (j,X, ct), TAP retrieves
the corresponding garbled circuit F , garbled constants C, and
the encrypted decoding blob d̃ using the trigger API and the
circuit id j. Next, TAP evaluates F to obtain the garbled action
data Y ← Ev(F, (X,C)) and forwards the tuple (j, Y, ct, d̃)
to AS. Function TAPExec in Fig. 5 depicts this process.

After receiving a message from TAP, AS decrypts d̃ to
obtain the decoding information, which will succeed only
when f1 evaluates to true (i.e. Lw0 = Lw0

1 ). If AS is able
to decrypt the decoding blob, it uses (d′, kv) to obtain the
final output (f2(x, c2), v) in plaintext. AS would terminate
if the message from TAP is malformed (i.e., hash of labels is
inconsistent or decryption fails) or stale (i.e., trigger timestamp
is old). The function ASExec in Fig. 5 depicts this process.

D. Rationale for Novel GC Protocol & Security Analysis

eTAP adopts a customized GC-based protocol tailored to
the needs of trigger-action platforms. This protocol is novel
in the following ways: (1) By leveraging the structure and
threat model of trigger-action systems, we can use efficient
semi-honest implementations of GCs to obtain security against
a malicious evaluator; (2) eTAP supports fixed-length string
operations including matching, extraction, and replacement
— common operations in trigger-action programs — using
Boolean circuits only; (3) eTAP contributes an efficient tech-
nique to ensure authenticity on the evaluator’s output (i.e.,
TAP) that requires only two hashes instead of the existing
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standard approach that requires hashes for true and false labels
for every output wire.

Our setting has four parties: TC generates the garbled circuit
via Gb′ and then, both TC and TS use En(e, ·) to encode their
respective inputs. On the other hand, TAP evaluates the garbled
circuit using Ev(F, ·) while AS decodes the plaintext output
using De(d′, ·). Thus, TC and TS jointly act as the “generator”,
and TAP and AS jointly emulate the role of the “evaluator” of
a two-party computation setting. The evaluators (TAP and AS)
in our setting do not have any private input, therefore, eTAP
does not require any oblivious transfers. Trust assumptions
of the constituent parties of the generators and evaluators are
asymmetric. Among the generators, TC is fully trusted and
TS is semi-honest; among the evaluators, AS is semi-honest
and TAP is fully malicious. Recall, TS and AS do not collude
with TAP. (See Section IV-A for the motivations behind these
trust assumptions.)

Next, we highlight the changes we introduce in two-
party GC protocol and the rationale behind those changes.
We formally prove all security properties of our protocol
in Appendix A.
(1) TC generates the encoding information deterministically
from the shared secret key kT and the circuit id j, so that
TS can also generate it without any communication with
TC during rule execution. This achieves our design goal of
ensuring that TC can be offline during rule execution. We note
that this change does not violate the input privacy guarantees
of the GC (see Thm. A.1, A.3, A.4, and A.5).
(2) Recall that the decoding blob (which contains information
to decode garbled action data and to decrypt payload) is
encrypted using the bit-wise XOR of kA and Lw0

1 as the key.
Thus, TAP cannot learn the decoding blob (it does not have
kA, Thm. A.1). Only AS can successfully decrypt s̃ if it gets
the true label of the output wire of f1, Lw0

1 , from TAP; which
can happen only when the predicate f1(x) evaluates to true.
This meets our privacy requirement that AS should not learn
f2(x, c2) or v when f1(x, c1) = false. We formally prove this
in Thm. A.4 and A.5.
(3) eTAP ensures that the malicious TAP (evaluator) cannot
tamper with the results of evaluation. To achieve this we
add the following information to the decoding blob: h =
H(Lw1

0 ‖ . . . ‖L
wm
0 ), the XOR offset er, and H(Lw0

0 ). Stan-
dard techniques to achieve this property require the hashes of
both true and false labels for every output wire [77]. However,
in eTAP, AS does not have access to the circuit F and the
garbled inputs (X,C). This makes it safe to disclose er to AS
(Thm. A.4, A.5). Thus, AS can compute Lw1

0 , . . . , Lwm
0 from

the output labels (see ASExec in Fig. 5) and check whether
TAP has returned forged labels for the output wires corre-
sponding to f2. The HMAC h̃ is used to ensure the authenticity
of the first output wire corresponding to f1, when it evaluates
to false. Because of this structure, eTAP achieves efficient
authenticity verification with two hash values (Thm. A.2). This
modification, combined with trusted generator, allows us to use
efficient semi-honest implementations of GCs while achieving
security against a malicious evaluator (TAP).

(4) We use a circuit id j to synchronize between different
parties (TS, TAP, AS) so that they evaluate the correct circuit.
Malicious TAP can observe the circuit id (in plaintext) and
can tamper with it. eTAP ensures that the AS will always be
able to catch a lying TAP, and will never act on an incorrect
circuit id j. (See the proof in Appendix A.) Metadata leaked
due to learning j is outside the scope of this paper (Security
Non-goals in Section IV-A). We discuss a potential solution
in Section VIII.

E. Supporting TAP-Specific Operations with Garbled Circuits

While in theory any arbitrary function can be converted into
Boolean circuits, and therefore can be computed using GCs,
in practice they can be expensive. Via an analysis of existing
real-world rules (Section III), we found that they involve
well-defined and relatively simple Boolean and arithmetic
operations — these are well-studied and efficiently supported
by existing GC libraries.

However, we also found that many rules use string oper-
ations, such as matching regular expressions and extracting
or replacing substrings. The corresponding Boolean circuits
of these operations, unless properly designed, will be in-
efficient to execute using GC [52]. eTAP computes these
string operations by first translating regular expressions into
deterministic finite automatons (DFA) and then applying a
novel approach to convert DFA to Boolean circuits that can
be efficiently evaluated using GC and can be easily extended
for substring extraction and replacement. We next describe
how eTAP utilizes this approach to perform regular expression
matching. Details on substring extraction and replacement are
given in Appendix B. (Please refer to [22] for details of how
to convert a regular expression into a DFA.)

Input and output representations. First, to avoid leaking
the length of the string, every string field in the trigger data
(and the action data) is padded to a fixed length bitstring.
AS is responsible for removing the padding as necessary. The
string is encoded into a fixed-length bitstring ~x = (x1, . . . , xn)
where xi ∈ {0, 1} before feeding into the encoding function
En. Let the operation of the string be defined using the DFA
Γ, which is represented as a five-tuple, Γ = (S,Σ, δ, s0,SF ),
where S is the set of states, Σ is the set of alphabets, s0 is
the initial state, and SF is the set of final states. The transition
function δ takes a state and an alphabet and returns the next
state; therefore, δ : S×Σ→ S. Since every string is a bitstring,
we have Σ = {0, 1}. Let q = |S| be the total number of states.
Without loss of generality, we assume S = Zq = {1, . . . , q}.

Let ~δ be the aggregated transition function that takes the
entire string ~x as input and outputs the final state of the DFA,

~δ(~x) = δ(. . . δ(δ(s0, x1), x2), . . . , xn).

If ~δ(~x) ∈ SF , then ~x is accepted by the DFA, which means
that the string matches the regular expression.

Converting DFAs into circuits. The main goal is to convert
the transition function t = δ(s, x) into a Boolean circuit that
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uses as few AND and OR gates as possible, to take advantage
of the standard free XOR optimization [43].

Since both the states s and t are integers between 1 and q,
one can choose to represent each state using log2 q bits and
find the truth table for δ. However, the resulting circuit would
be hard to construct and minimize automatically. Instead, we
encode each state as a bit-vector of size q using one-hot
encoding. We use S to denote the encoding of a state s ∈ S ,
and Si represents the i-the bit of S, where Si = 1 if i = s and
0 otherwise. We can observe that when Si = 1 and x = 0,
T j = 1 if and only if δ(i, 0) = j holds; Similarly, when Si = 1
and x = 1, T j = 1 if and only if δ(i, 1) = j. Therefore, the
output of the DFA becomes

~∆(~x) = ∆(. . .∆(∆(S0, x1), x2), . . . , xn),

where ∆ is the transition function that operates on the one-hot
encoded states.

To represent the transition function ∆ as a Boolean circuit,
we first define two sets for each state s, P s0 and P s1 , where
P sb = {i | δ(i, b) = j} for b ∈ {0, 1}. It holds that T j = 1 if
and only if either x = 1 and ∃i ∈ P j1 , Si = 1, or x = 0 and
∃i ∈ P j0 , Si = 1. That is to say, for 1 ≤ j ≤ q,

T j = (x ∧
∨
i∈P j

1

Si) ∨ (¬x ∧
∨
i∈P j

0

Si)

= (x ∧
∨
i∈P j

1

Si)⊕ (¬x ∧
∨
i∈P j

0

Si).

Because only one of the Si will be 1 at any time, therefore
the inner OR gates can also be replaced with XOR:

T j = (x ∧
⊕
i∈P j

1

Si)⊕ (¬x ∧
⊕
i∈P j

0

Si).

Note the above expression can be further simplified using the
Boolean algebra property (x∧a)⊕(¬x∧b) = ((a⊕b)∧x)⊕a.
Therefore, each bit in T requires at most one AND gate to
compute. To run Γ over a string of length n, we need to apply
transition function (∆) n times, and thus the resulting circuit
contains at most nq AND gates. Finally, to check if the final
state is accepted by Γ, simply computing

⊕
j∈SF

Sjn is sufficient.

We can observe that the size of the entire garbled circuit
is O(nqκ), on par with the communication cost of the state-
of-the-art non-GC based customized approach [52]. However,
being purely circuit-based, our approach allows functional
conjugation with other operations and retains the same security
properties of standard GC. We describe more details on how
to extend this approach to perform substring extraction and
replacement in Appendix B.

Supported functions. By incorporating the above techniques,
we can use garbled circuit to efficiently compute common
arithmetic operations, string operations, and dictionary lookup,
which cover all but three functions listed in Fig. 3. We
sketch the implementation details for each supported function
in Appendix C. Based on our analysis in Section III, this set
of operations enables eTAP to support 93.4% of the function-

dependent rules published on Zapier and all of the 500 most
popular rules on IFTTT.

It is possible to convert the remaining three unsupported
functions (format, strip_html, and html2markdown)
to Boolean circuits, as well, but the resulting circuits will be
very large (for example, we need to build a full-blown parser
to find HTML tags) and inefficient to evaluate. These functions
are only used for formatting and do not require any sensitive
user input. Thus, it is safe to run them on AS or TS directly
with minor modifications to their APIs.

VI. EVALUATION OF ETAP

We prototyped eTAP and showed that it is competitive in
performance with TAPs that do not provide any data pri-
vacy. We implemented the garbled circuit protocols described
in Section V using EMP toolkit [71], a C++ library for multi-
party computation. We build on EMP toolkit’s semi-honest
2PC protocol. We use state-of-the-art optimizations (including
free XOR [43] and half gates [77]) for improving efficiency
and bandwidth. The security parameter is κ = 128. For other
cryptographic operations we use Cryptography.io [2]. We use
SHAKE-128 (a member of SHA-3 family [57]) as a crypto-
graphic hash function, and AES in CBC mode with HMAC
using SHA-256 as a semantically secure, non-malleable, robust
symmetric-key encryption scheme. To convert regular expres-
sions into DFAs we use the library dk.brics.automaton [53].
For all experiments, we used n1-standard instances in Google
Cloud Platform configured with 2 vCPUs, 7.5 GB memory,
and 1 Gbps network connection.

A. Performance of Basic Operations

eTAP supports Boolean, (integer) arithmetic, and string op-
erations (which is sufficient to run most of the rules in Zapier
and IFTTT). To evaluate the performance of these basic opera-
tions, we picked a set of representative operations from Fig. 3.
For Boolean, we chose the AND operation since our circuits
only contain AND and XOR gates, and the XOR gate can be
computed without any encryption costs [43]. For numeric data,
we selected comparison and multiplication between two 32-bit
integers. For string operations, we divided them into two cat-
egories: operations that need regular expressions (contain,
replace, split, and extract_phone) and those that do
not (lookup and ==). We set the input x as a 100-character
(800 bit) string, except for lookup, where we set x to a 10-
character string. In the function m.lookup(x), we set m to
be a key-value store with 10 entries, where each key and each
value is 10-characters long. For x.replace(s, "") and
x.contain(s), we set the s to a 4-character string. For
x.split(d, 0), we set d to be a single character.

While measuring the costs for above basic garbled circuit
operations, we do not consider the overhead of other compo-
nents like payload encryption, as they are independent of the
operation. Fig. 6 shows the time required for each operation.

The circuit generation (at TC) and circuit evaluation (at
TAP) take roughly the same amount of time for each oper-
ation, which is expected because they require roughly similar
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Operation Computation time (ms) GC size # DFA
Client TS TAP AS (KB) states

Bool x & y 4.0 3.7 3.7 3.9 0.03 –

Num x > n 4.0 3.9 3.8 3.8 0.96 –
x * n 4.0 3.7 4.0 3.7 31 –

Str

x == t 4.0 3.7 4.0 3.8 25 –
m.lookup(x) 4.2 3.6 4.1 3.8 31 –
x.split(d,0) 5.7 3.7 5.3 4.1 78 16
x.contain(s) 7.8 3.9 7.4 3.9 123 47
x.replace(s,"") 10.7 3.8 10.5 4.6 278 40
x.extract_phone() 24.7 3.6 25.5 4.1 2191 108

Fig. 6: Execution time of different basic operations at the client
(TC), the trigger service (TS), the action service (AS), and the
TAP. We record the size of the garbled circuit sent from TC
to TAP and the number of states in the DFA if applicable.

operations. Most of the Boolean, arithmetic, and some string
operations (such as string equality or lookup) execute in less
than 4 ms on the TAP. Complex string operations are also fast
(takes less than 25 ms) under some reasonably sized inputs.
TS and AS can encode/decode inputs in less than 5 ms.

We record the size of the garbled circuit (|F |) for each
operation in the second-to-last column of Fig. 6. The garbled
circuit F needs to be periodically transferred from the client
to TAP and the size of the circuit changes significantly for
different operations. Although for Boolean AND the circuit is
only 31 bytes, the circuit size for a complex regular expression
extraction, which is one of the most expensive operations we
found, is quite large (2.2 MB). The size of garbled circuit
increases with the number of states in the DFA and the length
of the input string. The string replacement circuits (replace)
are larger, about 2.25x, than their equivalent matching circuits
(contain), even though the required DFA is larger for the
latter operation. The lookup circuit is small (31 KB).

B. Performance of Running Complete Rules

Next, we measure the performance of eTAP on real-world
rules. We first picked ten rules from the combined IFTTT and
Zapier dataset we collected in Section III. These rules handle
sensitive data of different sizes and cover a wide variety of
operations (as noted Fig. 3). We list the rules with simple
descriptions in Fig. 9. The first eight rules (R1-R8) involve
frequently used functions, while the last two rules represent
two rare but extreme scenarios. R9 requires a rarely-used
extract_phone function, which appears only three times
in our dataset and requires a complex regular expression to be
evaluated over a long text, thus making it the most expensive
rule to compute in our dataset. R10 is connected to a trigger
that might have a large payload (videos), so its performance
is more dependent on network bandwidth and latency.

For comparison, we built a skeleton version of each service
following the current TAP model, where only plaintext data
is exchanged and computed, as a baseline. We refer to this
as PlainTAP. We used Python library Flask for the cloud
component of TAP, as well as two RESTful servers that
mimic the APIs provided in current trigger and action services.
Two US-west instances hosting TS and AS, and two US-
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Fig. 7: Latency (top) and throughput (bottom) for running each
of the rules (X-axis) in eTAP and PlainTAP.

central instances for hosting TAP and the (simulated) TC. The
network latency between US-west and US-central is 39 ms.

Latency. The end-to-end execution latency measures the time
between a trigger event (trigger data and payload are available
to TS) and AS receiving plaintext output (Fig. 7). The latency,
except R9 and R10, is below 260 ms. When compared to
PlainTAP (Fig. 7, top), the execution latency for eTAP is 55%
more on average. The majority of the latency overhead is due
to the higher amount of data transfer in eTAP between TS
and TAP (27-51 KB) and between TAP and AS (3-32 KB),
which is nearly 128x more than what it would require in
PlainTAP. We show the data transfer in the last two columns
in Fig. 9. Given that TS, AS, and TAP are cloud-based services
with high-bandwidth network links, the increase in data usage
is reasonable. In addition, we list the time spent by TC to
generate and upload a single circuit (as the red bar in Fig. 7,
top). TC needs less than 12 ms to generate and transfer one
circuit for most rules (except for R9, in which case it takes
172 ms). This metric represents the setup time for a new rule
before it can be executed. In practice, TC can generate and
upload circuits in bulk periodically at its convenience.

Throughput. We measured the throughput as the maximum
number of executions per second by eTAP. We used Apache
Bench [1] to compute the throughput, which simulates sending
concurrent trigger messages to eTAP. We pre-computed the
trigger labels to eliminate the bottleneck on TS. We gradually
increased the concurrency level until the throughput saturated.
We reported the maximum throughput of eTAP and PlainTAP
in Fig. 7 (bottom). eTAP is capable of executing 65-90 rules
of type R1-R8 per second on a single server. Compared to
PlainTAP, for all but one (R9) rule, eTAP provides around
41% throughput of PlainTAP. In the worst case, when exe-
cuting R9, eTAP’s throughput reduces to 11% of PlainTAP.
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C. Large-scale Evaluation

To better characterize the performance of eTAP under
realistic workloads, we performed a large-scale evaluation
where we randomly sampled 100 rules from our combined
IFTTT and Zapier dataset. Out of the 100 sampled rules, 55
require computations on the trigger data. For rules with no
computations, we simply treated the trigger data as payload
and encrypted them inside ct.

Computation overhead on TC. In eTAP, the trusted client
TC has to periodically generate and distribute the garbled
circuits F , associated garbled constants C, and encrypted
decoding blobs d̃ to TAP. For simplicity, we will use the
term garbled circuit to denote the set (F,C, d̃). On average
it takes 4.1 ms to generate one garbled circuit. Based on
prior work [27], we assume that an average user has 26
rules installed and that each rule will be executed once every
15 minutes, which is the default interval used by IFTTT to
contact its trigger services [50]. Therefore, we estimate that
the TC of an average user needs to spend 10.2 seconds per
day to generate 2, 496 circuits. Since the average circuit size
is 25.3 KB, the estimated amount of data that TC has to
send to TAP per day is 61.7 MB, which is less than the data
required to back up 25 high-res photos or a 1-minute HD
video (1920x1080 px @30 fps) to a cloud service [28], [35],
a common task executed daily by modern smartphones.

Storage overhead. TAP needs to store all circuits up-
loaded by TC until they are executed. Based on the dataset
in Section III, there are 12.4 million rules (counted by number
of installations) running in IFTTT that are connected to private
triggers. If we assume, conservatively, that all of them require
computations, that each rule will be executed once every 15
minutes, and that each rule on average requires 25.3 KB of
storage per execution based on the sampled rule set, the total
storage overhead for using eTAP would be 28 TB. Given that
cloud storage is inexpensive [14], the overhead is manageable.
eTAP introduces little storage overhead to AS, TS, and TC.

TS and AS only need to store a 16-byte key (kT and kA) and
the current circuit id j (4 bytes) for each user. TC needs to
store the circuit id j and the keys for each service connected
to the user’s installed rules, since it can delete the circuits it
generated after uploading them to TAP.

Latency and throughput. We first measured the end-to-end
latency of running each rule individually and computed the
average. The average latency of eTAP is 139 ms, which is
similar to PlainTAP (110 ms). The increase in latency should
be tolerable, considering the delays in current trigger-action
systems are usually 1 to 2 minutes [50]. Then, we issued
concurrent requests to trigger every rule at the same time and
recorded the maximum throughput. The throughput of eTAP is
96 requests per second (RPS), which is 45% of the throughput
of PlainTAP (211 RPS). Overall, we have shown that eTAP
can run real rules with a modest performance impact.

VII. RELATED WORK

A few studies have investigated the security issues in IFTTT-
like systems. Most closely related is the work of Fernandes
et al. [30] where they first introduce the compromised TAP
model, and then built DTAP, a system to prevent the misuse
of stolen OAuth tokens. They focus only on the integrity
problem. By contrast, our work subsumes DTAP by providing
confidentiality to the private trigger data passing through
TAPs and adding authenticity of trigger-compute-action rule
execution.

Chiang et al. [24] recently propose Obfuscated TAP that
handles metadata attacks. They propose techniques to hide
trigger data arrival patterns and the types of trigger and action
services from the untrusted TAP. Their work also performs
end-to-end encryption of trigger data but cannot support com-
putations. In contrast, eTAP focuses on protecting sensitive
trigger data while allowing computation — a common use-
case in real-world rules (e.g., filter codes in IFTTT).

Bastys et al. [15] classify the sensitivity of IFTTT’s trigger
and action services and show that 30% of IFTTT’s apps may
violate privacy by exfiltrating private information to a third-
party. Xu et al. [73] analyze how much private data can be
harvested by TAPs. They demonstrate that IFTTT has access
to more data than necessary. For example, IFTTT monitors
devices even if they do not trigger actions. This motivates our
work in protecting all information from a malicious TAP.

A popular line of work investigates the semantics of rules
and how they violate security policies or interfere with each
other. Surbatovich et al. [68] present an empirical study of
IFTTT apps and categorize the apps with respect to potential
security and integrity violations. Wang et al. [70] design iRuler
that uses SMT techniques to discover inter-rule vulnerabilities.
This work is orthogonal to ours as it deals with rule semantics
and the TAP is considered trusted. By contrast, our work
protects trigger data from a malicious TAP.

Cryptographic techniques for secure computation. There
is a large body of work on privacy-preserving outsourced
computation. Garbled circuit is a particularly popular approach
[21], [36], [44], [46], [67]. However, most practical approaches
tend to be application-dependent [20], [42]. Since our setting
differs from a generic multi-party setting (as discussed in
Section V, we needed to develop a customized protocol).

For evaluation of string operations in a secure two-party
computation setting, Mohassel et al. [52] introduced Obliv-
DFA, a custom non-GC based protocol that only supports reg-
ular expression matching. Extending Obliv-DFA to substring
extraction and replacements would not be possible without
drastically changing the protocol and incurring significant
overhead. eTAP, on the other hand, supports string operations
through a novel and efficient purely circuit-based approach.
This allows functional composition with other operations such
as substring extraction/replacements and simple transfer of
security properties of GC.
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VIII. DISCUSSION AND LIMITATIONS

Security against metadata leakage. Some rules reveal sensi-
tive information just because they are executed. For example,
consider the rule: “IF I leave home, THEN turn off the WiFi.”
TS sends a message to AP only when the user leaves the home.
In our threat model, TAP knows the rule semantics. Therefore,
when TAP observes a message from this particular TS, it will
learn that the user has left the home. Such metadata leakage
from side-channels is hard to prevent cryptographically. Recent
work [24], [73] has applied cover traffic to protect time-
sensitive information in trigger-action rules by hiding the real
trigger events among fake-but-identical ones. We discuss a
simple modification to eTAP that uses cover traffic without
requiring TC to generate new (fake) circuits.

TC generates a set of circuits and transmits them to TAP,
as before. Let J denote circuit indices in this set. TS also
internally keeps track of the set of circuit indices J ′ that have
been used with real data. To send real data, TS picks random
j ∈ J \ J ′, updates J ′ ← J ′ ∪ {j}, and continues as before
(Section V). To send fake data, it picks random j ∈ J , and
then sets the garbled trigger data to random bits. TAP executes
the chosen circuit ID as before and sends output to AS. When
fake data is evaluated on a circuit, the decryption at the AS
will fail with very high probability and thus, it will ignore the
message. We present an example to illustrate this approach.
Assume TC generates two circuits with ids J = {j1, j2} and
TS has to send five events e1, e2, . . . , e5, among which only
e2 and e3 are real. Following the scheme above, it transmits
the following sequence of circuit ids to TAP: j1, j1, j2, j1, j2.
We see that j1 is used multiple times: first for e1, then for e2,
and finally for e4. TAP will notice that j1 circuit was executed
thrice, but it cannot distinguish which of these executions was
on real data.

This approach is secure due to two reasons: (1) TAP cannot
distinguish between executions on real or fake data due to the
garbling procedure we use in eTAP [77] (see Proposition 1
for a proof-sketch); and (2) TAP cannot learn anything from
circuit usage statistics because of how TS selects j. In addition,
circuits can be executed multiple times but at most only one
of them will be on real data. Such re-evaluation of circuits on
random data does not affect GC security properties [17].

Integrating with existing Trigger-Action Systems. We
contribute a clean-slate redesign for trigger-action platforms
providing data confidentiality from the ground up. As such,
it is not immediately backward compatible. However, eTAP’s
design attempts to minimize these required changes as follows:

First, we create a new TC, a mobile app that users must
install on their phones to interact with eTAP. The app mimics
the user experience that trigger-action platforms like IFTTT
or Zapier currently offer. For example, the user clicks on
buttons in a wizard-style user interface to program a rule. TC
transparently generates keys and GCs in the background and
shares them with TS, TAP, and AS (accordingly) — the user
does not have to take any additional action.

Second, the existing TS and AS need to adapt to eTAP
protocol. Specifically, both need to communicate with TC to
receive keys (kT ,kA). Additionally, TS has to send encoded
labels to TAP instead of plaintext trigger data, and AS has to
run the decoding function on circuit output (Fig. 5). We have
built a library that trigger/action services can use to upgrade
their APIs to perform the above operations.

Third, TAP has to evaluate GCs. It also has to cache circuits
it receives from TC. We observe that TAP is already setup to
perform these tasks — executing code at large scale and man-
aging user-specific data. Although this incurs a resource cost,
we believe that it is acceptable given the strong confidentiality
and integrity guarantees our work provides.

Rule semantics. A malicious TAP can learn about a user’s
automation patterns using its knowledge of rule semantics.
Although we encrypt the trigger data, TAP can still observe
the source endpoint of the trigger data and the destination of
the encrypted result. As future work, we envision using results
from anonymity networks like Tor [29] to hide the sources
(trigger service) and destinations (action service) of messages.

Circuit id synchronization. eTAP requires TC and TS to
synchronize on the circuit id j. TAP in eTAP cannot execute
a rule if the j specified by TS is not present in its database of
GCs sent by TC. This can happen, for example, if TC fails to
generate circuits for a certain day due to technical glitches, but
TS continues to generate trigger data. We do not want TS to
support additional APIs to inform TC about its current circuit
id j. Instead, we can rely on TAP to provide this information.
TS attaches an encrypted (using kT ) blob containing the circuit
id and the timestamp to TAP along with other data during rule
execution. TAP forwards that blob to TC on request from TC.
Thus TC can learn the current value of j and can detect if
TAP sends a stale message.

Loss of the trusted client (TC). TC in our setting
is the “root” of trust for generating garbled circuits. TC
can be an app running on user’s personal mobile device.
However, the app has to store a number of important
states necessary for continued execution of a rule, such as
kT ,kA,OAuth tokens, j, f, c, etc. Therefore, the states on the
trusted client must be preserved in case the device is lost.
We can use standard cloud-based solutions to back up the
states. For example, the states can be encrypted under a user’s
password and backed up in a cloud drive. The client can
recover the states and continue to operate on a new device
once the user connects their cloud drive accounts.

Circuit usage feedback. Different rules execute at varying
rates. TAP can monitor rule execution frequency to make
predictions about future circuit usage and optimize the number
of circuit generations and transmissions. TAP can lie about
these statistics; however, it does not affect on the security of
eTAP. We leave its implementation to future work.
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APPENDIX

A. Security Analysis of eTAP

In this section, we show that eTAP meets the security
goals outlined in Section IV-A by providing concrete security
definitions and proofs. We assume the adversaries are proba-
bilistic polynomial time (ppt) — they run in time polynomial
in security parameter κ. The garbled circuit protocol G used
in eTAP provides output privacy, message obliviousness, and
execution authenticity. The encryption scheme E is IND-CCA
secure. We model the hash function H as a random oracle [19].
Let negl(·) to be a negligible function.

We prove the security of each component of eTAP, namely
TAP, TS, and AS, separately. The security games are defined
in Fig. 8.

Security against malicious TAP. Following our threat model,
we assume the TAP is compromised and malicious. The
security definitions we expect from eTAP are as follows.

Obliviousness. We define the obliviousness property of eTAP
by the security game Oblivetap

A as shown in Fig. 8. Informally,
A despite arbitrarily deviating from the protocol should not
know anything about the user-provided constants c, the trigger
data x, v, and the output of the function y ← f(x).
Theorem A.1 (TAP Obliviousness). For any ppt adversary A,
the probability that A wins the Oblivetap

A game is negligible.

Pr
[
Oblivetap

A = 1
]
≤ 1/2 + negl(κ) ,

Proof: The proof of this theorem follows directly from the
message obliviousness security guarantee of garbled circuits
G [77] and the semantic security of the encryption scheme
E . As such, the attacker learns nothing about (x, v, c) from
(X,C, ct). First, note that the game Oblivetap

A is equivalent to
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Oblivetap
A :(

f, (x0, c0, v0), (x1, c1, v1)
)
←$A

Pick j ; kT ←$ {0, 1}κ ; kA←$ {0, 1}κ
b←$ {0, 1}
j, F, C, d̃←$ CktGarbling

(
(f, cb), (kT ,kA, j)

)
j,X, ct←$ TSExec

(
(xb, vb), (kT , j)

)
b′←$A(j,X, ct, F, C, d̃)
Return b = b′

Authetap
A :

(f, (x, c, v)) ←$A
Pick j ; kT ←$ {0, 1}κ ; kA←$ {0, 1}κ
j, F, C, d̃←$ CktGarbling ((f, c), (j,kT ,kA))
j,X, ct←$ TSExec ((x, v), (kT , j))
j′, Y ′, ct′, d̃′←$A(j,X, ct, F, C, d̃)
y′ ← ASExec

(
(j′, Y ′, ct′, d̃′),kA

)
Return (j′, Y ′, ct′, d̃′) 6= (j, F (X), ct, d̃)

∧y′ 6= ⊥

Privetap,1
B :(

f, (x0, c0, v0), (x1, c1, v1)
)
←$A

If f(x0, c0) 6= f(x1, c1) then Return ⊥
Pick j ; kT ←$ {0, 1}κ ; kA←$ {0, 1}κ
b←$ {0, 1}
j, F, C, d̃←$ CktGarbling

(
(f, cb), (kT ,kA, j)

)
j,X, ct←$ TSExec

(
(xb, vb), (kT , j)

)
j, Y, ct, d̃← TAPExec

(
(j,X, ct), (F,C, d̃)

)
b′←$A(j, Y, ct, d̃)
Return b = b′

Fig. 8: Security games for eTAP.

the game obv.simS [17] in [77]. Now, consider the simulator
S as presented in Fig. 3 in [77]. In our setting, S is used
by TC and TS to generate (F̂ , X̂, Ĉ) which is then used
for the rest of the computation. Hence the obliviousness of
(x, c) follows directly from the corresponding proof (game
obv.simS ) presented in [77] assuming the random oracle
model for H [19]. The indistinguishability of ctb follows
trivially from the semantic security guarantee of the encryption
scheme, thereby concluding our proof.

We achieve security against a malicious TAP even with a
GC implementation for the semi-honest model. Recall that the
“generators” — the trusted client (TC) and the trigger service
(TS) — in eTAP are at least semi-honest. Hence, a valid
garbled circuit for the correct function f is always generated
(as TC is trusted), and all inputs are correctly encoded (since
TS is semi-honest and the “evaluators” TAP and AS have no
input). Thus, the only way a malicious TAP can compromise
the security of eTAP is by forging an inauthentic output label
or by replaying, delaying, or dropping a message. We discuss
eTAP’s resilience to such attacks next.

Authenticity. The security guarantee authenticity ensures that
no ppt adversary can create a garbled output Y ′ 6= Y such that
AS acts on Y ′ (that is to say ASExec outputs anything but ⊥
or false). The formal definition is given by the security game
Authetap

A as shown in Fig. 8.
Theorem A.2 (TAP authenticity). For any ppt adversary A,
the probability that A wins the game Authetap

A is negligible,

Pr
[
Authetap

A = 1
]
≤ negl(κ) .

Proof: The proof follows from the non-malleability guarantee
(IND-CCA) of the encryption scheme E , execution authentic-
ity of G [77], and the collision resistance of the hash function
H. For the rest of the proof, consider the simulator S in
[77] which additionally returns h = H(Lw1

0 ‖ . . . ‖L
wm
0 ), er

and Lw0
0 . TC uses this additional information to generate the

decoding blob d̃. Similarly, the function in De is changed to
that of ASExec.
Case I - Authenticity of y1 = f1(x, c).
Note that s̃ is encrypted under a key derived from kA and Lw0

0 .
Hence, from the semantic security of the encryption scheme,
TAP does not have access to er since it does not know kA

by design. Thus, in case y1 = false, TAP has access only
to the false label Lw0

0 and thereby cannot cheat AS. On the

other hand, if y1 = true, TAP can return some garbage value
L′ such that D(L′ ⊕ kA, d̃) = ⊥. However, AS can detect
this with the help of the HMAC. Moreover, TAP cannot send
any of the hitherto unseen HMACs because it cannot obtain
the output labels without access to the corresponding X (TS’s
trigger data).
Case II - Authenticity of y2 = f2(x, c).
From the collision resistance of H, the only way TAP can cheat
is by generating a label Lwi

1−y2[i−1] for some wire i ∈ [1,m]

where y2[i] denotes the i-th bit of y2. However, as discussed
above, TAP cannot compute any other label other than the one
obtained from Ev(F,X,C).

The rest of the proof follows an identical sequence of
hybrids as the proof of Theorem 1 in [77] assuming the random
oracle model for H.

Protection from altering the timing of rule execution. An
adversary cannot forge a message that the AS will accept
due to the strong authenticity guarantee of eTAP protocol.
However, it can alter the execution time of a rule by delib-
erately dropping, delaying, or replaying messages. TAP can
successfully drop a message without being detected by AS.
However, this would fall under the denial-of-service attack
which is beyond eTAP’s scope (Section IV-A). eTAP also
protects against replayed or delayed messages.

Every message from TS is timestamped as they are sent
which AS can check before performing any action. Therefore,
AS will reject a message — outputting ⊥ — if the received
message is delayed more than τ seconds (a parameter set by
AS) since the time it was sent from TS. (See the function
ASExec in Fig. 5.) We acknowledge that the TAP can replay
any message for which f1(x, c) = false without getting
detected by the AS.

Nevertheless, this does not lead to any undesirable outcome
in practice because in this case AS performs no action. Note
that the above attack (replay of false labels) could have been
prevented by keeping track of the last seen circuit id of each
rule at AS. However, maintaining such state information would
violate the RESTfulness of AS.

Tampering with circuit id j. The malicious TAP can modify
the circuit id j — a unique identifier given to every instance
of a garbled circuit for synchronization between TAP, TS, and
AS — in whatever way they want to. But eTAP ensures AS
will always be able to detect any such modification and rejects
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the message from TAP (by outputting ⊥). This is done by
having TS include the circuit id j in the encrypted payload
ct — that TAP cannot modify. AS verifies that value against
the circuit id forwarded by TAP, and any mismatch results
in execution termination. Though TAP cannot tamper with
j without being detected, it could learn the popularity of
certain rules by observing circuit id values (which are passed
to TAP in plaintext to help find corresponding garbled circuit
F to execute). We acknowledge that metadata attacks are a
limitation in eTAP and we discuss a cover traffic approach to
address them (Section VIII).

Security Analysis of TS and AS. We assume TS and AS are
honest but curious. We define security as follows.
Theorem A.3 (PrivTS). TS does not learn anything about the
user constants (c1, c2).
Proof Sketch. TS only receives from the client kT and j,
which it uses to compute the seed e = (es, er). Thus, it can
only learn the pairs of labels for all the input wires (including
the ones for user constants) to the garbled circuit. TS, by
design, does not have access to the client constants.

AS should not learn about the user constants and the trigger
data beyond what is revealed from the output of the function f .
Let y1 = f1(x, c) and y2 = f2(x, c). We also need to ensure
that when the output of the predicate function y1 = false, AS
does not learn the output of the function f2 and the payload v.
We formally state these properties, using the theorem below.
Theorem A.4 (Priv0AS). If y1 = false, then AS learns nothing
about (x, c, v) other than what is revealed from y1 = false.
Proof: To know the value of y2, AS needs access to the
decoding table d′ (from the obliviousness guarantee of garbled
circuits in [77]). AS will be able to do this only if it has
access to Lw0

1 (from the IND-CCA security of the encryption
scheme). Note, Lw0

1 is available to TAP, and subsequently
to AS, only if f1(x) = true [77]. In case TAP returns
some garbage value other than Lw0

1 , the decryption still fails.
Additionally, v is protected by the IND-CCA security of the
encryption scheme.
Theorem A.5 (Priv1AS). If y1 = true, then for any ppt
adversary B, the probability that B wins the game Privetap,1

B is
only negligibly more than random guessing. That is,

Pr
[
Privetap,1

B = 1
]
≤ 1/2 + negl(κ) .

Proof: The indistinguishability of ctb follows from the
semantic security of the encryption scheme. Now note that
Privetap,1

B is equivalent to prv.simS) [17] in [77]. The rest of
the proof is based on the proof for the corresponding game
(prv.simS) in [77]). In fact in our setting, the view of the A
is a strict subset of that of the adversary presented in [77].
Specifically, our adversary A does not have access to the
garbled inputs Xb, Cb and the garbled circuit F . Note that
in the above game, a malicious TAP instead of outputting
(Y, ct) ← TAPExec ((X, ct), (F,C)), could generate some
arbitrary message. However, from the obliviousness property
of garbled circuits (Thm. A.1, we know that this message has

to be completely oblivious of (F,X, c) and hence the privacy
guarantee is upheld trivially.
Proposition 1 (TAP Input Indistinguishability). For any ppt
adversary A with access to a circuit garbled with the scheme
in [77], the probability that A distinguishes between a valid
garbled input and randomly generated input is negligibly more
than random guessing.
Proof Sketch. Following Fig. 2 in [77], it is clear that A
cannot validate inputs to XOR gates. For AND gates, the fact
that at most one valid label for each input wire is revealed to
A and the correlated robustness of the hash function ensures
that F = (TG, TE) does not reveal information about the valid
inputs.

B. Extracting and Replacing Substrings with Garbled Circuits

We now discuss how eTAP extends the regular expression
matching technique described in Section V-E to extract and
replace substrings.

Finding locations of matching substring. Given a regular
expression pattern p, the goal is to find the starting and ending
positions of the matching substrings.

Finding the ending positions can be achieved by applying
the KMP algorithm [41] on the pattern p to convert it into a
DFA (denoted by Γ), so that Γ will output an accepting state at
the end of each matching substring. For example, if the pattern
is ab, we will rewrite it as .*ab and convert the new pattern
into DFA. Then we use our matching protocol (Section V-E) to
run Γ on the input string ~x. However, instead of only checking
whether the final state Sn is an accepting state, we check every
state S1, . . . , Sn produced by Γ. We denote the resulting n-bit
sequence as e1, . . . , en. If ei = 1, it indicates that the i-th bit
is the end of a matching substring.

Since a DFA can only report the end positions of matches
end, we need another DFA to find the starting positions. We
therefore compute a DFA Γ′ on the reversed pattern p. If we
run Γ′ on the reversed input string, we get the beginning of
the matching substring. Then, like the previous step, we run Γ′

backward on ~x (by feeding from xn to x1) and check the type
of every state to generate bn, . . . , b1. If bi = 1, it indicates
that the i-th bit is the beginning of a matching substring.

Finally, we can find the locations of all matching sub-
strings. That is, we need to compute another n-bit sequence
m1, . . . ,mn where mi = 1 if and only if the i-th bit is part
of a matching substring.

We can observe that m1 = b1 and for any i such that 2 ≤
i ≤ n, mi can be calculated as mi = bi ∨ (¬ei−1 ∧mi−1).

Extracting matching substring. To extract the matching
substrings, we want to replace the characters in non-matching
parts with the padding character (0x00). Therefore, the output
string ~y = {y1, . . . , yn} is computed by yi = mi ∧ xi.

Replacing matching substring. In our dataset, all
replace(s,t) functions are used with t set to empty
string, so it is equivalent to removing the matching substring,
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# Rule description Functions performed GC size Data transfer (KB)
(KB) TS→TAP TAP→AS

R1 Share your Tweets (excluding replies) in Slack ! x[Text].startwith("@") 0.2 43 20
R2 Get Slack notifications for new Twitter followers with more

than 5,000 followers
x[FollowerCount] > 5000 1.0 29 3

R3 Copy New Events from Google Calendar into iOS Calendar x[StartTime] - x[EndTime] 1.0 33 32
R4 Blink your lights when you receive email from a specific

address
x[Sender] == c 5.8 29 3

R5 Send SMS messages for new Shopify orders x[Phone] != null;
x[Phone].replace(" ", "")

9.0 27 3

R6 Add new inbound emails as contacts in Ontraport x[SenderName].split(" ", 0);
x[SenderName].split(" ", 1)

30.5 34 13

R7 Create Asana tasks when new Slack messages start with
$request

x[Text].startwith("$request");
x[Text].replace("$request");
c2.lookup(x[Channel])

92.4 29 4

R8 Save new liked Tweets with links to Pocket x[Text].contain("http") 173.4 43 20
R9 Send SMS reminders for upcoming Google Calendar events x[Description].extract_phone() 4,668.9 51 28
R10 Upload new videos in Google Drive to YouTube x[Filename].endwith("mp4|avi|mov") 12.1 32,133 32,108

Fig. 9: Selected real-world rules for our experiments from both IFTTT and Zapier. We note the size of the corresponding
garbled circuits, and the amount of data transferred from TS to TAP and TAP to AS during rule execution.

and thus the output string ~y = {y1, . . . , yn} is computed by
yi = ¬mi ∧ xi.

However, for completeness, we will describe a protocol for
the general case scenario where |t| > 0, where t denotes
the size of the string t. The output string size will be
n × |s||t| since the TAP should not know which substring is
matched and replaced and should assume all substrings can
be replaced. When |s| � |t| the sizes of the resulting garbled
circuits will be unbearably large. Therefore, we purpose an
alternative design approach where the actual replacement is
processed in the action service: we replace the first character
of each matching substring with some placeholder character,
say 0xff, and the rest with the padding character 0x00,
so the action service can invoke the following functions
to complete the replacement: y.replace("0x00", "");
y.replace("0xff", t); where y is the decoded output
string. Note the first replace() is required regardless of our
protocol, since it is needed for removing the padding from the
input string.

We argue this approach does not break our security goal,
revealing no additional trigger data that is not supposed to
be revealed to the action service. If the replacement string t
is considered sensitive the client can encrypt the replacement
mapping with the 1 label of the output bit corresponding to∨n
i=1m

i, similar to how we protect d and k in Fig. 9.
Assuming an ASCII encoding and 0xff as the placeholder

character, we can compute the output string ~y using yi =
si−(i−1 mod 8) ∨ (¬mi ∧xi), where the i− (i− 1 mod 8)-th
bit is the first bit of the character that i-th bit belongs.
x == s and x.startwith(s). A bit-wise comparison

between x and s is performed up to the min(len(x),
C. Implementing Supported Function

In this appendix section, we describe how to implement
each operation that appears in Fig. 3, except for Boolean and
arithmetic operations, since existing GC frameworks like EMP
toolkit [71] already provide built-in functions to efficiently
translate them.

len(s)) bit, and results are feed into a large AND gate
as output. For x == s, We additionally check if the next
remaining character in x or s is a padding character.
x.endwith(s) and x.contain(s). These functions

need to be first converted to a correspondingly regular ex-
pression and then matched against x.
x.replace(s, t). We can apply the DFA replacement
technique described in Appendix B directly for this type of
functions.
x.extract_phone() and extract_email(). We ap-
ply the DFA extraction described in Appendix B by construct-
ing appropriate regular expressions. However, as we need the
matching results to be non-overlapping, one modification is
needed : we can append [^a-Z0-9] to the regular expression
and shift the final matching position forward by 1 character.
x.split(d,i). Without loss of generality, we assume
d is a single character. First we need to create two regular
expressions, Γ1 and Γ2, to that output accepting states when
the i-th and i+1-th occurrences of d is encountered. Once
we have the starting and ending location of the substring, we
can proceed with substring extractions.
x.truncate(n). We can keep a variable counter c that

gets increased after each bit in x is processed. And each output
bit y[i] is computed by x[i] & (n > c).
x.tolowercase(). Assume ASCII encoding, for each

character in x, we first check if the last five bits are in the
valid ranges; if so, we flip the sixth bit.
m.lookup(x). First, we compare x with each key of m,

and store the matching results into a len(m)-bit sequence.
We denote this sequence as b. Then, the output y is computed
iteratively by y = (b[i] & v[i]) | (!b[i] & y) as
i ranges from 1 to len(m).

D. Rules used for performance evaluation

The descriptions for the selected trigger-action rules we
evaluated in Section VI-B are shown in Fig. 9.
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