
OASIS: Operational Access Sandboxes
for Information Security

Mauro Conti
∗

Università di Padova
Padova, Italy

conti@math.unipd.it

Earlence Fernandes
University of Michigan

Ann Arbor, Michigan, USA
earlence@umich.edu

Justin Paupore
University of Michigan

Ann Arbor, Michigan, USA
jpaupore@umich.edu

Atul Prakash
University of Michigan

Ann Arbor, Michigan, USA
aprakash@umich.edu

Daniel Simionato
Università di Padova

Padova, Italy
daniel.simionato@gmail.com

ABSTRACT
Android’s permission system follows an “all or nothing” ap-
proach when installing an application. The end user has
no way to know how the permissions are actually used by
the application, and how the sensitive data flows during its
execution. With this work we present OASIS (Operational
Access Sandboxes for Information Security), a trusted com-
ponent that allows developers to execute operations on sensi-
tive data while keeping that data confidential. OASIS allows
the end user to have full control over the data available to
applications, and also grants policy based regulation of sen-
sitive data flows. Moreover, our system can be deployed via
a simple application installation, and does not require any
modification to the stock Android OS.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and protection

Keywords
Android permissions; operational access; trusted execution
environment; sensitive data

1. INTRODUCTION
Android requires applications to specify a set of permis-

sions in order to access sensors (e.g., GPS, camera), sensi-
tive operations (e.g., SMS), or sensitive data (e.g., contacts,
phone IMEI). When installing an application package (app),
the package manager displays the required permissions to
the user. To install the app, all of the requested permissions
must be accepted by the user – there is no way, at least in
the stock Android OS, to install an app while denying access
to one of its required permissions. This permission system
forces a draconian choice: to be able to use the app, the

∗The names of the authors are in alphabetical order.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPSM’14, November 07, 2014, Scottsdale, AZ, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-2955-5/14/11$15.00.
http://dx.doi.org/10.1145/2666620.2666629.

user must grant all of the permissions requested and, fur-
thermore, give up any ability to monitor or control whether
the granted permissions are used properly.

Let us consider, for example, a barcode scanner app. This
app obviously needs the CAMERA permission to scan barcodes
and QR codes. It also needs the READ_CONTACTS permission
to generate a QR code from a contact, and the INTERNET

permission to search information on a code. These are all
legitimate uses, and thus permissions are required, but a
hypothetical malicious barcode app could also misuse the
granted permissions to send all the user contacts to a data-
collecting server without user consent.

OASIS provides a framework for an alternative permis-
sions system for Android, in the form of a trusted service
that helps apps operate on sensitive data safely, in a manner
specified by the developer, while allowing users to monitor
or prevent the flow of sensitive information out of the device.

To the best of our knowledge, there is no solution capa-
ble of completely addressing this problem. Kirin [5] was the
first effort to identify potentially dangerous combinations of
Android permissions. However, it has no concept of “opera-
tions” in an application, and thus it cannot distinguish safe
and unsafe operations within the same app. We will examine
Kirin and other Android security solutions in Section 2.

In this paper we present OASIS, our solution that allows
an app to completely isolate itself from the sensitive data
it uses, while allowing operational access to that data. We
will discuss our solution in Section 3. OASIS allows the app
developer to define his own operations on private data, and
provides a safe and isolated environment to execute those
operations, while never disclosing actual sensitive data to
the application. The results of the operations on sensitive
data are provided to the app in the form of a token, without
disclosing the sensitive data itself. Tokens can be used for
subsequent operations within OASIS’s safe execution envi-
ronment. OASIS tracks the permissions used in generating
each token at runtime. Users can define a policy that re-
stricts dangerous combinations of permissions, without hin-
dering safer combinations. For example, contact data could
be restricted from being sent over the network by the app,
while the app could still display contact data on the screen,
or retrieve other information from the network.

OASIS is designed to work as a service on the stock An-
droid OS, meaning it can be installed like a normal app. The

105

main advantage of OASIS is that it provides app developers
with a safer mechanism to operate on sensitive data than
standard Android. Additionally, users can also better track
the flows of sensitive information from the app to the out-
side world. OASIS does not change or restrict the behavior
of existing Android apps. We present the architecture and
an implementation of OASIS in sections 3.3 and 3.4.

In short, OASIS allows:

• an app developer to execute code on sensitive data
safely, with more assurance that the data remains pro-
tected, by preventing or detecting flows of sensitive
data with harmful combinations of permissions.

• the user to monitor the flow of sensitive data to off-
device destinations.

• the user or an app developer to define a policy that
specifies which combinations of permissions can and
can’t be used.

2. RELATED WORK
In the state of the art, there are various approaches for

protecting sensitive data. We will briefly discuss solutions
focused on Android permissions, taint tracking, non-sensitive
data, virtualization, app rewriting and OS hardening.

Android Permissions. Kirin [5] identifies dangerous ap-
plications at install time, by evaluating the permissions re-
quired and checking with a user-defined policy. Apex [10]
defines a “permission extension framework” that allows the
user to define policies regulating the usage of system per-
missions at runtime.

These solutions extend the Android permission system,
but they do not distinguish between the different operations
of an application. Instead, our proposal focuses on the inter-
action between the permissions in a data flow, which allows
us to express a policy in terms of operations on sensitive
data rather than permissions used.

Taint tracking. Taint tracking solutions monitor sources
of sensitive data and use taints to track its usage in an app.
This tracking can be done either in a static or dynamic way.
Flowdroid [1] is a static analysis tool used to identify data
leaks in Android applications. TaintDroid [4] is an efficient
dynamic taint tracking tool able to track multiple data flows,
by modifying Android’s Dalvik VM to track explicit data
flows. Appfence [8] is a solution built on top of TaintDroid
that can shadow sensitive data and block exfiltration (i.e.,
unauthorized data leakage via network access).

The main limit of these solutions, as shown in [13], is
that it is possible to use control flows (i.e., implicit flows) to
remove the taint from sensitive data. OASIS does not have
this problem since it does not rely on taint analysis.

Non-sensitive data. Another approach to securing sen-
sitive data is to simply return non-sensitive information to
untrusted apps. MockDroid [2] protects sensitive data by al-
lowing the user to return fake data to all requests involving a
specific permission. Similarly, TISSA [15] allows the user to
choose at runtime which permissions are granted to an app,
and which permissions should be “emulated” by returning
fake or no data.

Neither of these solutions allow the user to set a policy for
the behavior of app, nor consider the interaction between
sensitive sources in a data flow. OASIS instead allows the
user to set a policy that regulates these interactions.

RePriv [6] allows in-browser data collectors to access sen-
sitive data via opaque handles, and allows operations on the
handles via side-effect-free functions. While this is similar to
our approach in OASIS, RePriv requires the data collectors
to be written in a special language, while OASIS SODAs
can be written in ordinary Java.

Virtualization. Virtualizing grants isolation, but requires
computational power, and although smartphones are becom-
ing more and more powerful, energy consumption severely
hinders the adoption of resource-demanding solutions. While
projects like L4Android [9] aim to bring paravirtualization
to smartphones, MOSES [12] uses a different approach with
“light virtualization”. The main feature of this system is
the usage of security profiles to achieve separated virtual
environments for the application to run on.

Restricting the data available through a user-defined pol-
icy is a good approach, especially in the use case of a corpo-
rate environment with a BYOD (Bring Your Own Device)
policy. However, even in MOSES there is no concept of in-
teraction between permissions, and since MOSES uses the
TaintDroid framework to taint the data, its controls can be
avoided using control flows.

Application rewriting. Repackaging apps allows to in-
sert the necessary security checks without modifying the OS.
Aurasium [14] rewrites the code of an application, yielding a
hardened version of the same app, in which every access to
sensitive data is intercepted and checked against pre-defined
policies. However, rewriting an application raises problems
with copyright laws, and, in practice, any tampering with
application packages is forbidden by the Google Play Store
Developer agreement.1

With OASIS, we do no try to secure all apps; instead
we offer a trusted environment where applications that use
our system are guaranteed to comply to user policies and
sensitive data is kept undisclosed.

OS hardening. Instead of building solutions on top of the
OS, a more effective approach would be to modify the OS
directly – we discuss a few examples in the following. Layer-
cake [11] allows secure embedding of widgets inside Android
applications (via Access Control Gadgets). The Android Se-
curity Modules framework (ASM) [7] offers a programmable
interface to define reference monitors in Android.

This type of approach is surely promising, but since it
requires the modification of the OS internals, without sup-
port from Google or a major Android OEM, it is unlikely to
achieve a widespread adoption.

3. OUR SOLUTION: OASIS
In this section, we first provide an overview of OASIS

(Section 3.1) together with related challenges (Section 3.2).
Then, we discuss its architecture, feasibility, and further is-
sues in sections 3.3, 3.4, and 3.5, respectively.

3.1 Overview
Our solution, OASIS, offers a trusted component that

manages sensitive data, preventing apps from accessing the
data directly, while allowing them to use the data in their
code. One way to do this would be to use a simple delega-
tion pattern, where the trusted service directly exposes the

1https://play.google.com/about/developer-distribution-
agreement.html#prohibited

106

functionalities needed. However, this solution would imply
having a public API on the trusted component able to satisfy
all possible usages of private data in an Android application,
which seems a requirement very difficult to satisfy.

Instead of designing a “good enough” API, OASIS allows
app developers to define their own operations on private
data, in the form of a SODA (Sensitive Operation Defined
by the App) – a self-contained, stateless function that pro-
duces an output from specified inputs. Our system would
then execute this SODA within a trusted and isolated envi-
ronment, while returning the result of the computation as
an opaque handle to the app. The app cannot access the
results directly, since it only gets back a handle, but it can
pass the handle to subsequent SODAs for further operations
on sensitive data. Inputs to a SODA can be ordinary data or
handles, and the result returned is arbitrary, but is always
returned as a handle. The OASIS service keeps tracks of the
real values associated with the handles, as well as the per-
missions used in building up the handle. Only the disclosure
of the real data that is embodied in the handle is subject to
policy, not the operations on the data itself.

This achieves four key goals:

1. access to private data is kept separate from the appli-
cation itself;

2. the transformations over private data are defined by
developer;

3. since access to private data is done in a safe and con-
trolled environment (via a trusted service), we can pre-
cisely track the combination of permissions used by an
app when private data is externalized.

4. permissions from the user are not needed for sensitive
data accessed via OASIS, except when sensitive data
is desired to be sent out of the trusted service, e.g., to
the network, in unencrypted form.

The OASIS service offers functionality to declassify han-
dles and output raw values to destinations such as the de-
vice’s display or the network (sink); since it is the trusted
component itself that does this declassification, and since a
handle carries all the permissions used in its computation,
OASIS can control and monitor these flows via policy. Such
control and monitoring is simply not possible with the stan-
dard Android permissions system that only has knowledge
about the data (and sinks) that will be available to the app.

3.2 Challenges
The design of OASIS presents some interesting challenges.

One challenge is that it must work on top on the stock
Android OS. We believe that the requirement to install a
modified OS would negatively influence the adoption of OA-
SIS, since only advanced users (with unlocked phones) would
benefit from the system. We think that designing the solu-
tion on top of stock Android will facilitate a more widespread
adoption. Another benefit of an unmodified OS is that it
is compatible with other solutions, past and future, that
address the same or related problems. By using Android
APIs we can also better maintain OASIS as future releases
of the OS occur. This does have the downside that OASIS
is an opt-in service for apps; apps can still request normal
Android permissions and bypass OASIS. Our hope is that
OASIS-compliant apps (that only access sensitive data via
OASIS) will be more trusted by end users.

The second challenge is that SODAs should be easy to
implement by Android developers. A very desirable require-
ment is to be able to easily modify an existing app to use
our service, without significant architectural changes. The
goal is to have a system with clear functionality that does
not interfere with applications that do not use it, but that
gives the apps that wish to use OASIS an easy way to help
secure the user’s private data.

A third challenge is that the execution of a SODA must be
isolated from normal app code, and the SODA must run in
a monitored environment where it can not cause side effects.
On the other hand, since we want to access private data in
the SODA (under the trusted component’s supervision), we
must devise a way to let the SODA easily access sensitive
information while preventing it from leaking the information
to untrusted components.

Finally, we must track the permissions used by a SODA at
run-time efficiently. Ideally, run-time taint-tracking should
not be required for efficiency reasons. Analyzing the un-
trusted code beforehand would avoid the execution of the
code if malicious or suspicious instructions were detected.
However a static analysis precise enough might add a much
greater overhead than monitoring the SODA execution it-
self. OASIS avoids the complexity of instruction-level anal-
ysis, instead treating SODAs as black-boxes and tracking
permissions associated with each handle based on their in-
puts and outputs. Isolating the execution of SODAs in a
trusted service also offers the advantage that the entire app
does not have to be analyzed or taint-tracked.

3.3 Architecture
OASIS uses a client-server model, where the client is an

Android app and the server is a service that exposes func-
tionality to execute SODAs on sensitive data. An app re-
quests the execution of a SODA via a blocking inter-process
communication (IPC) call to the service. The app sends
the SODA and any required additional parameters as argu-
ments of the call to the service, and then waits for the result
from the service. The OASIS service tracks usage of sensi-
tive data during the SODA’s execution, checking against a
policy whether those uses are allowed or not.

The architecture of OASIS is illustrated in Figure 1. In
particular, the service is composed of three main Android
services:

• Sandbox service (number 1 in Figure 1), which realizes
the isolated environment for the SODA execution;

• DataGateway service (number 2), used to access pri-
vate data from the Sandbox;

• OasisService (number 3), the service which encapsu-
lates the other two and is called by the application.

We use the DataGateway service as a way to keep the
Sandbox isolated and prevent an app from accessing sensi-
tive data directly. Apps need to use the DataGateway ser-
vice to retrieve or output the sensitive information. Thus,
at the DataGateway, we can monitor and track the sensitive
data (“sources”) accessed by a SODA as well as where this
data flows to (“sinks”).

OasisService receives the calls from an app (number 4 in
Figure 1) to execute a SODA. It selects a Sandbox from a
pool of identical sanitized sandboxes. The architecture uses
a pool of sandboxes to scale better in case of multiple con-
current requests and for resiliency. The parameters given

107

Figure 1: High view architecture of our solution.

to OasisService for the SODA call are passed by value into
the Sandbox - this prevents SODAs from modifying param-
eters to leak data from the sandbox. When a SODA has
finished executing, its result is then returned to OasisSer-
vice, which checks (with a call to the DataGateway service)
the sources and the sinks accessed by the SODA. OasisSer-
vice stores the result and returns an opaque handle to the
result back to the app. OasisService also calculates the taint
of the SODA, starting it at the union of the taints on the
inputs, and adding any inputs used directly by the SODA as
it executes. The final taint of the SODA is also associated
with the returned handle.

If the SODA accesses a sink (e.g., the network), policy is
checked to see if the access should be logged or prevented
(number 5 in Figure 1). For example, if the taint set when
the network is accessed includes the camera, that implies
that there is a potential flow from an image acquired by the
camera to the network.

The results from the SODAs are returned in the form of
an opaque handle, called OasisToken (number 6 in Figure
1). An OasisToken is composed of two fields: the encrypted
result of a SODA execution, and a taint field that tracks the
cumulative set of permissions used (i.e., sensitive sources
used) to obtain the token. OasisService also adds a digest
(generated with a cryptographic hash function) to the to-
ken, in order to verify the integrity of the token if used as
input in subsequent computations. By encrypting informa-
tion and returning it to the caller application, we can offload
the data management to the application itself, which can use
this OasisToken as input for other SODAs or simply store
it. In the future, we will avoid the cost of encrypting com-
putation results by keeping them in the OasisService (up to
a maximum amount of time) and only returning a symbolic
token to the application. Encrypted values will be available
to applications only with an explicit request.

To prevent data leakage between SODAs with different
taints, SODAs cannot store data between executions, except
by returning that data at the end of the execution.

OasisService also offers functions to display information
on the screen (e.g., via dialogs or toast notifications). De-
pending on whether one trusts Android to display sensitive
information securely, these may or not be subject to policy.
OasisService also includes operations to declassify informa-

tion and send it through a sink (e.g., sending GPS coordi-
nates to the network), subject to policy. These are needed to
keep the app functional while being able to track or prevent
risky flows of sensitive data.

Apps can get operational access to sensitive data without
requesting access to the raw sensitive data. This potentially
reduces the number of permissions that apps need to get
approved from users.

To use OASIS, a developer needs to write a SODA for
every operation he wants to do on sensitive data, except
displaying operations. Inside the SODA, the developer can
retrieve sensitive data with calls to the DataGateway ser-
vice. The OasisToken resulting from a SODA execution can
be displayed by calling OasisService. The end user would
simply need to install the OASIS application (and option-
ally define a policy) to use the system.

3.4 Feasibility Evaluation
We implemented a preliminary prototype of the architec-

ture to establish feasibility. Our solution is composed of a
service package (OasisService) and a common library (OA-
SISCommon). The common library is meant to be imported
in the apps that want to use OASIS, and contains the type
definition of OasisToken, a java interface for the SODAs
(IOASISoda), and the AIDL (Android Interface Definition
Language) interfaces of OasisService and DataGateway ser-
vices.

The application developer that wants to use our service
has to write a set of SODAs that will handle the operations
on private data. Each SODA is defined as a separate Java
class that implements the interface IOASISoda included in
the common library. In Figure 2 we can see the main in-
teractions in a sample execution. When a developer needs
to execute a SODA, he needs to bind to OasisService and
then call OasisToken runSODA(String sClass, Map input-

Tokens, Bundle args) (number 1 in Figure 2) – a method
with a standard signature in the common library. The first
argument is a String specifying the name of the class of the
SODA, in order to allow OasisService to load the class from
a different process. The last two arguments are used as pa-
rameters of the SODA to send in input data. The formal
parameter inputTokens is an optional dictionary with Oa-
sisTokens as values and Strings as keys, in order to help the
developer retrieve the right token during the execution. The
parameter args is an optional Bundle that contains all other
non-sensitive parameters that a SODA may need. The re-
sult of this invocation will be an OasisToken containing the
encrypted information resulting from the SODA execution.

OASIS library wraps the runSODA method into the fol-
lowing method that contains two additional parameters, au-
thToken and dataGW, whose values are supplied by the li-
brary and also also available to user SODAs:

String execSODA(Map<String, OasisToken> inputTkns,

Bundle args, IBinder authToken, IBinder dataGW).

The two parameters, authToken and dataGW are objects
of type IBinder and created by the infrastructure for the
developer: they are used to identify a SODA instance and
the DataGateway service, respectively, since multiple SO-
DAs could be executing in different sandboxes at any given
time. We use an IBinder type for the last two parameters
because the semantics of IBinder objects on Android ensure

108

Figure 2: Sample execution of a SODA.

they will maintain a unique identity across all processes.
Finally, the result expected from the execution is always a
String. It represents the string value of an OasisToken that
encapsulates the results of executing a SODA.

Sandboxing SODAs: When the service executes the
runSODA method, it retrieves the calling application package
name. The service then generates an IBinder object to be
used to identify this SODA. Subsequently, it chooses a clean
Sandbox from the pool and calls the Sandbox method ex-

ecSODA(String sourceAPK, String sClass, Map inputTo-

kens, Bundle args, IBinder authToken, IBinder DataGW)

(number 2 in Figure 2). Inside this method, the Sandbox
binds to the DataGateway service, after retrieving a proper
binder from the IBinder it receives as argument. The Sand-
box is implemented as an Android service with the property
isolatedProcess set to true. Such a service runs in a sepa-
rate process with no permissions of its own, and the only
communication possible is through the service API. Since
the only binder object that is passed to the Sandbox is the
DataGateway binder, the only way to retrieve or send out
sensitive information is by calling the DataGateway service.
The isolation of the process prevents any unapproved I/O
communication, even if the SODA is written poorly.

The Sandbox loads the class implementing a SODA from
the caller’s APK (number 3 in Figure 2). We then use Java
reflection to instantiate a new object of the SODA class, and
execute the method that runs the SODA. The result of this
execution will be returned to OasisService as a String.

The DataGateway service is a local service that can only
be called inside OasisService application. This service acts
as interface for the SODA to gather sensitive data, e.g.,
a developer would call datagw.getLastLocation(IBinder

authToken) to get the current location in a SODA (num-
ber 4 in Figure 2). The DataGateway will call the Android
LocationManager (number 5) and retrieve the desired data,
which will be returned to the SODA. The authToken is nec-
essary to identify the SODA. Every call made by a SODA
sets one or more permission flags in the DataGateway. This
allows to track every data access during the SODA execu-
tion and apply security policy. The DataGateway service
also offers a registration method to OasisService. During
the registration, the DataGateway acquires a token that is
used to authenticate to OasisService for subsequent calls.

At the end of the execution of a SODA, OasisService will
make a call to the DataGateway method int retrievePer-

missionsUsed(IBinder authToken) to retrieve the permis-
sions used by that SODA, using the previously generated
IBinder as an identifier (number 6 in Figure 2). OasisSer-
vice encrypts the result of the SODA execution and creates
a new OasisToken. The retrieved permissions are added to
the permissions required by all the OasisTokens used as in-
put to the SODA, and result in the final set of permissions
associated with the SODA and the returned OasisToken.
This OasisToken object contains the encrypted result, the
permissions used by the SODAs and a digest of the contents
added by OasisService to verify the token integrity. The to-
ken is returned (number 8) to the calling app, where it can
be stored, used as input of another SODA or be displayed
by calling an OasisService output method.

OASIS uses notifications and dialogs as a way to display
information on top of another application without disclosing
sensitive data. The ability to display information on top of
the calling apps without disclosing sensitive data will be
added in the future, either by using Access Control Gadgets
(like the ones described in [11]) or by drawing on top of the
app window using available Android APIs.

Usage example. We use a barcode scanner like the one
presented in the introduction app as an example. The app
operations on sensitive data must be moved inside SODAs.
These operations include using the camera to take a picture
and computing the code from that picture (SODA 1), and
looking up information on the computed value via the net-
work (SODA 2). These SODAs are independent and can be
executed at different times (e.g., if we already have an Oa-
sisToken from a previous execution of SODA 1, we will not
need to execute the first SODA). Without loss of generality,
we also note that the two SODAs can be combined into a
single SODA. The first SODA to get a camera picture and
convert to a barcode value has the following code outline:

BufferedImage codeImg =
datagw . getCamPic (authTkn) ;

//Camera permiss ion i s added
// proces s the image
St r ing code = processQRImg (codeImg) ;
return code ; // uses Camera permiss ion .

An OasisToken carrying the encrypted code will be returned
to the app. The second SODA look up information (having
OasisToken codeTkn as input and carrying a taint of Camera
permission) has the following outline:

S t r ing code =
datagw . decodeToken (codeTkn , authTkn) ;

i f (i sContact (code))
//add as c o n t a c t a c t i v i t y
datagw . addContact (. . , authTkn) ;
// Contact permiss ion added

else
// search code on Google
datagw . openURL (. . , authTkn) ;
// I n t e r n e t permiss ion added

. . .
return someResult ;
// uses Camera+Contact or Camera+I n t e r n e t

Whenever unencrypted sensitive data is externalized, Oa-
sisService checks if the permissions associated with the SODA
so far comply with the externalization policy. Note that be-
cause we use the DataGateway to track the permissions used

109

by the SODA, only the permissions effectively used will be
added as required by the SODA. This allows OASIS to se-
lectively block only the operations (SODA executions) that
do not comply with the policies.

3.5 Discussion and Future Work
The end user as well as legitimate app developers are the

main beneficiaries of OASIS. The user can precisely control
the flow of sensitive data in the application by defining his
own policy. App developers can often request fewer per-
missions, since they get access to sensitive data via OASIS,
but still operate on sensitive data. The permissions that
they do request will be in clearer terms to the user (e.g.,
“use the Camera and send the data to the Internet”). For
permissions that are granted, the OASIS framework can log
when the permissions are used, the combination of permis-
sions used, and the number of bytes sent out. This can help
users of the app to develop information on real-world usage
of permissions and better judge whether the app’s use of
permissions is reasonable.

The application developer, by using OASIS, can also gain
the trust of end-users by delegating sensitive data manip-
ulation to OasisService. We find an interesting use case in
a corporate environment with a BYOD policy, where the
system administrator can define a mandatory policy for its
users, and only allow apps that use the OASIS framework
exclusively for permissions. OASIS will ensure that all the
applications using the service will comply with the policy,
effectively creating a trusted environment for the apps.

Methods for expressing policy for externalizing sensitive
data in OASIS still need to be defined and are not yet imple-
mented. It could be similar to the current Android model,
except that combinations of permissions can be expressed
(e.g., allow network access, allow access to the contacts
database, but do not allow contacts to go out on the net-
work). These policies will need to be distinct from standard
Android permissions since they are enforced by OASIS.

Since OASIS checks the policies at run time, it would be
possible to change active policies in relation to the context
to obtain a behavior similar to CRêPE [3].

We believe it is possible, at least to some degree, to au-
tomatically inspect application code and identify the oper-
ations on sensitive data that could be executed by OASIS
in the form of a SODA. We plan to build a tool to help
developers adapt their current application to use OASIS.

Finally, we note that even though our implementation of
OASIS is Android-specific, the general architecture and de-
sign principles are applicable in other contexts where sensi-
tive data is accessed.

4. CONCLUSIONS
In this work we presented OASIS, our solution to the

problem of sensitive data leaking in Android. OASIS allows
an app developer to run code that uses sensitive data in a
trusted, monitored, and sandboxed environment. The apps
that use our system do not have access to sensitive data, but
can operate on it, and thus do not need any Android permis-
sions in many cases (unless they access sensitive resources
directly outside OASIS). Only externalization of sensitive
data, not use, is subject to policy and monitoring.

5. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grant No. 1318722. Any opinions,
findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Mauro Conti is supported by a EU Marie Curie Fellowship

(grant No. PCIG11-GA-2012-321980), by the Italian MIUR PRIN

Project Tenace (grant No. 20103P34XC), and by the Project

“Tackling Mobile Malware with Innovative Machine Learning Tech-

niques” funded by the University of Padua.

6. REFERENCES
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,

J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings PLDI. ACM, 2014.

[2] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
Mockdroid: trading privacy for application functionality
on smartphones. In Hotmobile. ACM, 2011.

[3] M. Conti, B. Crispo, E. Fernandes, and
Y. Zhauniarovich. Crêpe: A system for enforcing
fine-grained context-related policies on android. TIFS,
7(5):1426–1438, 2012.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI. USENIX, 2010.

[5] W. Enck, M. Ongtang, and P. McDaniel. Mitigating
android software misuse before it happens. Technical
report, 2008.

[6] M. Fredrikson and B. Livshits. Repriv: Re-imagining
content personalization and in-browser privacy. In
Oakland, pages 131–146. IEEE, 2011.

[7] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi.
Asm: A programmable interface for extending Android
security. Technical Report TUD-CS-2014-0063, CASED
/ TU Darmstadt, 2014.

[8] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: Retrofitting Android to protect data from
imperious applications. In CCS, 2011.

[9] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg,
and M. Peter. L4Android: a generic operating system
framework for secure smartphones. In SPSM. ACM,
2011.

[10] M. Nauman, S. Khan, and X. Zhang. Apex: extending
Android permission model and enforcement with
user-defined runtime constraints. In CCS. ACM, 2010.

[11] F. Roesner and T. Kohno. Securing embedded user
interfaces: Android and beyond. In USENIX Security,
2013.

[12] G. Russello, M. Conti, B. Crispo, and E. Fernandes.
Moses: supporting operation modes on smartphones. In
SACMAT. ACM, 2012.

[13] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar.
On the effectiveness of dynamic taint analysis for
protecting against private information leaks on
android-based devices. In SECRYPT, 2013.

[14] R. Xu, H. Säıdi, and R. Anderson. Aurasium:
Practical policy enforcement for android applications.
In USENIX Security Symposium, 2012.

[15] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh.
Taming information-stealing smartphone applications
(on Android). In TRUST. Springer, 2011.

110

